Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tG91v6AjlM1YsfEbpYPC_wsJuCFkN0yh6BwnHxm48lfIpaveasrHZVo77h4nzHvsnvYhm_F2YH_AbHtGqou1YCtV3UKH-VuUfiGT1ilAsJI95YqQ5Uafc3-2tbQ-H7s8OGLNZN_KMejZQ21WlcXP9NhS4QOEi7j4XN-LOE-uvRC3ReWXFMWxG2OKF9kBW8iR-aTl3ITI95tDLIUx7K51vckpnTci29q2oYSSOSo-ld7ZRyKrBRlPdTlPi-FqlHWXx1bKk3e9JJ-NJajK1aRnpJn_HsUYCljcX2qbihLyr_V6oumrK16j_eu3nHCOhi34ugCuJRZEUkN9IQ5MVS5pWIv9f7FG8fXlAE3WYyRDA94j4JWGHZNnKrB96lVm0WkleYWuO9B1Uzf01A8r6GwuZc-LWKzR_nmYxqerYLGSH3Xra26qhdVSPUIsBOUxIG5182P9d44B667ppHwVDAL7owMbZqJFnTLP-1DMraZWs=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vC0DPFUvbiJ648XuRhhWogF1Tp6sZRy-VZA_7PtPHwbQh3GeD8GY--eJcSZTILo2oZP8vUqAU7kgDLRQXsIytvNgQPpVIANWG1tgbTwBcbU4Bh6vFKFGCURqdzV36hDjxS2q8NPkuq7cUskRg8p4YO8m0U6Pj7asaD0FhIXk_qrb0PJi0KohiTMWyAJmQ6k8dlibQguWOoPdsSKM0lCMzFdB139ebsU9OWVvjnZkgSCTllIT21fhXVf_4pfO2o2Q=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_saoV4vEkjuxNul_tC9L1oOMHtg9YmHtzPL6sSG8vQTEJBpswVL34M1x7_O6JjVG0UeGVjREPkL7NkzMlqZPY1c5QZ7oSUHmfT3ZySknEA1SbtgU4wnW15kPmOl5Lynw1Ysk8Aec-61B6XCVNNgftzQD7DmFuBJFwNuNSBUJ0It-hTDr6DPXNY8CMbhiWdUQRBE4B52WCkwXgGPt0C9hdBgf9iDf5qpszA2Zjottg=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sN2Eheo9Dyq45LBc_Pr_40wF_X1rA1XtCO5s-CwfFLgSDgPgAHQ0X-Gyz2lA2Q1_E7Ac7XH-pRoyu47bb0S7rtejLhbjBAOcrsDBU3zxRv6RMdwrg8lkGZOdCy1f3ZJi11D5GAYg367Wh5qY-6fe5LHmLyGzvKkV2v6Bf7ptZOpQmCQguoFjkkWH-y5Bw3aK_gijOF=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uwkhRvlcYTn4RAnlIEbnz3gMG56rXfKPKRdKZFz4G5X6RgAorW30wUA7yhoijDZVZhsZrQNVT7uG5DTrrBW_NuvWAZZzHUs42HhIrPu1tXnFgIopOXfNvmhJTZSAlw_DmRmchzCPSVKi-9mGlkdIBlxpJ1qH7ijGDE9k-bEdXI_CxXFxsU3gBQh5bDNw3v8B2Zp9nGm67pKMxn_9y3mHhKq7LoiVfOweeboGR2GVOorTKEwpvst4FgDDpRPSI=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u8srr8v-q-5qpU6vLY7SAja3DXaHa1Rru1dI_ffmTjs81dj1-ISCvfQIYj1UP2885RC8k_DSM7P1kvIQjodz5pwz5KkPKEieLnqLWR5QKxrDQD578-1oPNQ_msr-bX5nIVV9nsT9h6Pqazao5ojfIX8rcge07DpkcXnflhHm7B7cEIX-ON1f808VdN3H_YcrVr=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uwkhRvlcYTn4RAnlIEbnz3gMG56rXfKPKRdKZFz4G5X6RgAorW30wUA7yhoijDZVZhsZrQNVT7uG5DTrrBW_NuvWAZZzHUs42HhIrPu1tXnFgIopOXfNvmhJTZSAlw_DmRmchzCPSVKi-9mGlkdIBlxpJ1qH7ijGDE9k-bEdXI_CxXFxsU3gBQh5bDNw3v8B2Zp9nGm67pKMxn_9y3mHhKq7LoiVfOweeboGR2GVOorTKEwpvst4FgDDpRPSI=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb