Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uF6lYzIIAZ6MZEi8j838I2qt3iExo9zTdMwpflbtefJzx3Isvtp0kJdPyCRI_4Vs0erD4z0fwly61sge__b2_UtTi9kVbx1fGV46ty22US2hmFo3hAbpSlyJWj1grMDafbr3Qa6YbTItswdGsvlpQxMw8g1npv9oPCFoTzHilXRN-oPPZ0vOHBJU90niUImXogyQ8qMcyCZI8AeWqphe_bVVDogZoQcRImiPJjQ1F3VErDhJ-H1w-ivWtofL-Wjm87dE0Q4ejLWikNXjXtCLkeyO8C8CImZp3jsG1nTO7DumZrfL2mJCr_aEnHvTrB9OBE2p_QRp6OYdNGsfGcN6vsLnP5lFOguBLosRgSOP3ZoOkZBz__fZ0lAvyunFfnO8CtHZNxFVsWxXGYtDdh-NvzAmui8UOF-RNSWq6mTx1Cez881UeQvVJakoka082p7qCJWP4XZ3R22veA7s3D3BmL8WEP0RcBKLhnU9--hqs=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_smT9o1JOqLeWj7oZhqzxhGCv4DfEtodVRcQDxqcI1k1K1Yn60JMz1ly22i06qwWc9UUH8eJSgFxdgU6lQ6dtmpeJyQ6E33EEO9y6F0clI00DnXAMUs5UI42k5Lomf4s872HGp3VH927J-HzUwV_sQBEzoIxQVvLnGtX8ldBaYCeuznmyHvDtccbZV66_Iv9njpAoa607MhNcnj9If7DYT3CFMXVR20EQhy9Rsnu1wkhyf-5thAuDlVsVUsebxUqQ=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uaKJP_JhjZvGgwv_JtC-kLWRV3D0udxZRoSkODDT8X6jIbfG732PoYw_4zTVkNJaEnPHqzfCDomdqJgiLE4L6iUoMBIVjCJ_4KVd0aqnlC2XnDFAXwwbjdqf-ROT7XzAN88qx8q-_egkB4C8JUoxiDwiTgkO5ncu_nNbazaMyDqPlbkQU_OOjWoet0sf1cCA2lWRI_WkiM2E08f7hkoqEw_gHNnX5azClXW1KolA=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vS18oNFLw_eeoTk82YsGpaGDBtfsA1EENKYfiANz_F0Ff4sw5YLnwlIsrUpmNR7KCNmI4Y7mAI8-NM0AGMA3DyFvYr8-iukD7Q8mw4Dw0LZgIqDLxbi_8jsSfJyEjb5CYQjMzu3ozvpETAl9rYoCE9p1T1SNE48pLRoezNaCPbONE1JNg3s6B6rmA2dGQpdQVO1ZBX=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uF9yLKg1lYXvcEm-qOggH1M-PRvk9f3E8wBCbE0JyIrLnoyH_vMII3RGIs1bmN5MF6yvu1TrmI5K_v9P5iLO_cecb3MCCSVpCTBDPGme4ElbylGx3ll6YFPe56qi_U2rXSc_pJUiSeAK0XZdVhRhyQg39kt0L9q9cCbw2eH3LbkKr1-nCUwhT4O-k9kkRtKz8Uwz5zrtIow1qL2HPFJQcMFX5ZEJZxQnBfy-LUDDpyYa9uHTQ1qJhULpCQ928=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u5S88MHM8doFNSJP57Pt2FA9FnQY4QZth-1SOSlUsv97NZ9RAgv9xEILE4Zk_7p7xfXSZxexa-F8u1pvjSk2rd2RxrtdQBC_wKDXrk3hOGhhKMZgnZ2x683d7hFXdORus_4zvXnO-igCErpWK9cjchrvdVmhp_Mg1iOPSR153uyf8vuNwMRIBdxANBpVrPSnrf=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uF9yLKg1lYXvcEm-qOggH1M-PRvk9f3E8wBCbE0JyIrLnoyH_vMII3RGIs1bmN5MF6yvu1TrmI5K_v9P5iLO_cecb3MCCSVpCTBDPGme4ElbylGx3ll6YFPe56qi_U2rXSc_pJUiSeAK0XZdVhRhyQg39kt0L9q9cCbw2eH3LbkKr1-nCUwhT4O-k9kkRtKz8Uwz5zrtIow1qL2HPFJQcMFX5ZEJZxQnBfy-LUDDpyYa9uHTQ1qJhULpCQ928=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb