Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vNLiromckeoeGLmdiAsjmQZX6hWIvGAFjydewS6sUpkyi59AaD7Hp0tuScYFKaLKitbhaNwfr6OyQOsEtD_znUZ8Dy10E6rnqnfKnwjk_vYee4PIS-Shwl3Ozx4qwFa-T06MO7bfSkkcJ22PN9OQytZwK9Bk-72pcwb5tbY9eWuWrwG0o71U-OouKdebXbMyq7rJ3o2-pEt8Z9yu8U0nuk4kGGqVHtUc5Nx3FXCxWPfCwElEGAIeRhcLSOa5y97D1J5L4FC44CT7rK_YKlIsyiCmU4l5OpNe33zdkbDzx2a5cC7cwUuro2eZn3k3ACGF8SnkO6E0KAcVFEDJQhHYe3GlbRv7elcAcnJussOo0sAkUSvNsE7iFU1H_kiKwf0tsL6-V7hmkb9OJbD8EEUu-j3qyDkA5okKPsOBx-sSGHTwb1nkGxvX5XENmfQLpSboTDGSiehA_lmALL10DP5UWZFYEdF42pDbBLowb56u4=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sIt9jD-kvfRnm9yAHJB-ELkj-MWugi7uD9enQmFImYu7eSFqKpdWDcbBUsH0EzarWm8iqt9lIvP-KaJwn04d2aYteCrOnG5JZG-QtlYt7EpDAAaJUgfkyI5umr-OdpdDHuM67zbMaDL-xxfTikZtVABfjGuvr7xjZcYnTVzWm9mv_vD0sY6765_dOQVr3re2tR0xYMSZAhLcb-AZodiYrNqp7yOiosOMW8K79XYGPq5uk6AGL1qCXVkNBabl9njA=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vrKf6OsR8fYhSYMWTryJLrs1hlJQbNFqsGKBrIA3qiRuQxNQAqsNlZV5hAgPY4KIVak7pNYRYoZk0XcXRJSkxYiIhuPJT1D6HVOG6psg3WsGq332f5fKRnqMLgPJ_Vrcyn7sL9hMPVP1yjNu7RYg_rmKVWRbVqOGGspchntzoY1Wdc-ln3Fi1FkpvQuMgaFs0ab5GNAnPtANk9l7N7Jyo3MFJIUKfGM6B9nV4xAQ=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tR1CqPCdCcnJ6wMLY9zbNLmQWdZNF_60JJKkw1Rsd_y46Bkpk0Down5HSnsWW60GwFFaY-EM3W3OzZxeZnXQzb4yfpZRIEFYY1AJWjUznoUVekyVHLoc4Zapm6XcXsUNeClDppE4wzSk9nXGTJybJli-rdzLzbozuVg03nSn4N-RvUogCKLmmCP3z416aKLExVKHsw=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uoYD2kVlwXi89f9x7P7pqX5q_KnthO0dDPTE8FBLeynQgS8zJMCeO4r_pYPgw8kb9o2uUwR3L3IBEkzo7-KKGmU7muXNyUzvpFIMQ27SKBghMpY81wg6ZzFmovZS5yBGAvDJFS5EBNEGunQI91j6N42rRJuamldPFSNSQXL_VtasMA1skRShiSgRASGpQS4cMKS40MMdgo_-Z2JomDhWX5H-QABvXv7dId25yCZK0JjO8QaiWw0pfKk4ZemCM=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uyBHXHqY9GHvHftLARbi_qrCpw60MYkxVvmAtdf9Ro0P3ArRNG-h20p-UQVCnmD53tUQISbVz-kpRACv1B3KtWt8WHjktb1vp4sju3PSmsvCU6SMO8Lwfi5jBPDaFgrERHlWdF6bgoHFcfopfJz2cytaaM3OwkZFo-sSGR9tkaKXSJyLwnzMZM73PuObQTKi_n=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uoYD2kVlwXi89f9x7P7pqX5q_KnthO0dDPTE8FBLeynQgS8zJMCeO4r_pYPgw8kb9o2uUwR3L3IBEkzo7-KKGmU7muXNyUzvpFIMQ27SKBghMpY81wg6ZzFmovZS5yBGAvDJFS5EBNEGunQI91j6N42rRJuamldPFSNSQXL_VtasMA1skRShiSgRASGpQS4cMKS40MMdgo_-Z2JomDhWX5H-QABvXv7dId25yCZK0JjO8QaiWw0pfKk4ZemCM=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =

what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb