Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uouTWt8-cXr-UhG-2OTvtiDWYYHmFlpqmqsypuPBciwKtliwvy30aPFua0iU1JeY7sj_uSzXW2aBGRUap5Sh8tPKBBXjqlYezF88951d-C0tXQ-IhOGSljcaN8ZWz3qqBL_sqMF5nPCOkxYf4ZihYoTi4dHsidLPts79sjMf7S7SgqCSzZEiDHSHVMk2DPSPPgeiWYbVAeSQAMRicJZmfYc9f2Ngk8KOCt2eIsGix9nPjSTBHnod_rAp6X8mHlGoXpHBFv8F7iFtJ87L7OiAWPOi5G590HlcaJg430pnuS1b5vAFVezPNRdQXUZ3dsh6bbIgRFz82ZRDR8w5fBcOqzsatDpHEhPUQ2zKdrAfdDQ65vSo-OV1IXxfXa0CQ0aKFC0oLR-gqGqGGi1v_3z8-gVU3nXmwF8TUdQjmeVo6asSBGF5xTJ3qdWybiNEHtnnCZCEVlwaZNr0n9anAakKXztrim3oKiJq49K8NM3E4=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u1hrvFErmvy_CiasW2p9jViuD1fQ2s2anObTNB9orUkTqyjw20wyWxIkjEbMIcMruEZH_bwCte0iVFPZUfuPIJEegiCV8T6wD_aQwrTtxZIiR5D4P4Hfp9aSRWCVTkWlsek2iv8j9acwB81AgPE19IdwwAHMVU8_phqOGrw_KWXLteqQKf2WEzIpBy7LwPKXJ4Nb3KmYOxkj0AsgXI6_pauezSPrvcQHFgZSbBgUk9SYmZul7kTbJ9lQWymF4xCQ=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vh8sA67HCjPqYvLbJxI5JLqv-xNmcbSPhBRjX4d62ahz7EK4RKXoC-r3HAhpyXbETpKaHqGKRCXxIVx-qD0VgTTehX7_OoFhVG-Fr5aP-jTz6sYTP_-BjMz0SjOg14d1_hhBt7DUyBvM2w5d5mLWkW8HiYuNHaBznlWF1iGLdvCemB_aO41l3lqgvFtC9kFEGx04g3nSJIDK5hCG6-BAt4yGoYZ9ed3YKNGhV3pw=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uRlLiVun_1YATlEjBwZRCGkn-zt-jyzz-vp5sPFGvBMM0IAm6Gl7iUN1_hZ5JM2a9u0kGgMxm2TAzzYmFl9Kt94jmoA5yAd2N9wzfOsqOyzIamap3mtKwDb1GE_58YhSHNQve_ERyc6zupA8wbxHakcs9pbQgtxTtD8LzlkSalS1yKNdB9qQk6yEpkHQs-Y3shrsf-=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t0sbLHz2YMF6HqVXT2UjJ7QfK14mh_6X8sn1orznNh2Y2vK163S4i3iEojgG8uzDHxwxKUju3Vi3Xr34miLg0JEWgAlAGyh5ZXmtb8kFfNlel2pcFwWu6bI0ijdbsOcHMEWCTX-ekMCQYNQySsEqBJ6NlpLXBY2y7ECCejcvw4Tl3HpX4z7u9ob-t2l_ILDNf-Uu3SkBDXE94GTYKYzM5fVT9zUk3W0WwTN3Apqp5Vp5NdmyH2umjPnYnkLwA=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tk-x7QCMxeoDtz4WyLjoG7qwasUvjKzYvb7kplwIoa8NfYyNir2qqH4xy7cL08WPXE0RksrobljQF3dVDoixIvhPvt1i0kAu1GDjcZyq54rg7oWXiBueV_SrmgcGMC3x_cR4uYDSAM8J58EGPZz4knzSK1yj81Uh7EV2sliG4bT6CTI2g0bOGW7ak94CmME16H=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t0sbLHz2YMF6HqVXT2UjJ7QfK14mh_6X8sn1orznNh2Y2vK163S4i3iEojgG8uzDHxwxKUju3Vi3Xr34miLg0JEWgAlAGyh5ZXmtb8kFfNlel2pcFwWu6bI0ijdbsOcHMEWCTX-ekMCQYNQySsEqBJ6NlpLXBY2y7ECCejcvw4Tl3HpX4z7u9ob-t2l_ILDNf-Uu3SkBDXE94GTYKYzM5fVT9zUk3W0WwTN3Apqp5Vp5NdmyH2umjPnYnkLwA=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =

what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb