Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tLr8YiKh4PuFJxLjiWQ0Io8BSK5TyQ9MWXH3CBYs3BhJS3zGa8wB_y97IAqh9ahboTSppqddU8J7VEBFMJA1G19Wq0BLLsFQmsaisdm_7ocT5YCHLxGKHA3I30v7SzSOwXl2ekVAWg-xb2mrXn4D7VOjmcI1OSJB4N__fKNK1SH1f_CfrDO6ASDooDEOFCgzNfDb82AReYH0EthhyVipgfW3TIwsGuAUZzVCpnxwQ9KWOC9cRHmN_RPT9nDdmR9N9BmbPTpmOY4uy5PLD1qVxuPn2XBoeH5-252xvVOEk4ePQVii_oVzRXDNm-cB7agC_i9zT-jWcyw-LAMi-xJiutBG6vgBkamQVeKf5Jy5tfn78nezaKNITrRVTaF_NQkfBLEAHZGiwrvJgYibKkR064a3JgfnKT9QLGhYXOijlaYOKTEaotmmrJDW52Ez6wRqEnb9woslSnqTT2MY9lthg36aeMbtOAOd1PKNXzchg=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_szGSclEiFQSIiNbQ49QGmklEF-yiZPHLn4ygqYkBXYMzG4P-7_tZK3wX87qwoGjGvlwcmQPuY-gdh7_kgnkgtRTiaZ_lP6eTJBtHnOAffcqpcWVqC4EzPvRIN8l6lUp0z4h8TMVsIUf2wrIqBQDufVPj77Uh2oY_Kx95L61H9_VVnqeQX8uS2h3ZLZtxL3QhMOgw9Q0l_u31NAT0n30aNeDqx0YXyOknNfGJ9C37xRw2P1w5B4Q01lekRjfm_AVA=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vURqJofW23kE4oNQZVwUjIKuLkvT8wYB6VCUj1F8LUkQnFZr5Oht9GbTfrOxm8TeTXxfe_JFNAx0hjoAHYOhLOtzdZTA-2yrYwu1HOsU5M0Y0zUKejkCx98PSBWgqhNffEYzbxFw8vt4b-RHMk9eHdjtTzuMERp3zDQW7pd3mpoaeKAoVgEwNb7BTFVf5yF-eSb3Nj-6sbd6pjxV7rBRwyNFm5JO7yn4-LiroHFQ=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_trf-zWIhxbfyl9PziOpCVmYZbjmQQ98O2lzn6LMDmYg2NtnYVzgeA1DHDkxLqx_WYzwufQAuPdZJP_HslO1H2c8_5jfY49VfnSSQhNsdLIxlYXhNbM154_YP9ESaixxn45KMNFlL7yk2xEHtbxGoI8yHJcfYDY6mxhI-7mDBL59MgAq2S23uA4-VseUTZUlxMdncSk=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sr72_b7MliB1ROXiMvgYpIO41_l5tdXTkhlZ0x67-AkdEuR5Bo0D3qtrBdXq4c5rDu8U1n87mCbExKBEwCay5pZSq9WqCr9b6DBSoKb97eezqNE7iXWIUhVMHNNM9ByKoysaKIBEi8Tcn_HDFNPWpIOY3d22pW-1VM0Y-FH-KBx6tWjOuazZXqr7ksdxMm4sZjsQjchQgwpOqWkavmlij0sDYYMOkoletXMBGorXMxOGjyBx4kz4psTU6u158=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ubeUo1JXfalchriCQqg4_E2l5ibg1IWQX-DHb5hnBo4196VcRvPmCfvnhHnllnGaYCv1sl6PCUH51_1StxFryOnk3ST5px68t-6pCUez7-2ZEstPxd3-N17wLDXLygKM9OFsBRXBgaMsbqRP6SlgglsjxgdTQY99uBcbqvECk7Vhp75Hw_2HUcDEk4Vrvvz6c_=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sr72_b7MliB1ROXiMvgYpIO41_l5tdXTkhlZ0x67-AkdEuR5Bo0D3qtrBdXq4c5rDu8U1n87mCbExKBEwCay5pZSq9WqCr9b6DBSoKb97eezqNE7iXWIUhVMHNNM9ByKoysaKIBEi8Tcn_HDFNPWpIOY3d22pW-1VM0Y-FH-KBx6tWjOuazZXqr7ksdxMm4sZjsQjchQgwpOqWkavmlij0sDYYMOkoletXMBGorXMxOGjyBx4kz4psTU6u158=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =

what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb