Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sgwBWA0JYCLCKEYZxocf3u16PCUtgsiKtTPbPxJpa4K1PpXOZpHkON2EWL-OYHamAfo6hW4vEUaEY5vbiw2rNFlUJICuvF8L95DVFSQByygsl1qaQgmUr1MGGLHUQ3-lUKssF7xPdO4atmlv9A2mFWNQBIdkEaYqcxhCfCLyQXl2VbUGR7bWO95t-sVxVyuXK9JEIlhSn_R1kILIbGV7zVY_tvsulzFwUzx2xqPoKfKEHCoO5RhVL5nTzLfe8bmaL8BxyFxq9agZ3saGwFwm3ioCoZr9d3syawGLfuBSmuFXnX0FJMDItzUOV9ebRNXeW_WskJPgHvjkTPM2tADiukxu5X5o10jrYBN_t-19H9-_0YKWeETiPd7HdufKNs38cqnkzzZ9DlINqbMxE_LWPpi6IQM2lmgv8ivHvUGlBAE9FUPanHHWs1NKogFBoQl7SVp12Rv4HLlBJVtGmti2YDpNA07l0U-HtNFHElP-s=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_twZJ5idSgMGPs_ICI9FcvnPjgys-qPo-ghkWOE9vewcMBFkbHYgqQYbs_cuTAafTAJ6ZyFCcIiO4qXl1NJRRFBwa3bQWsO42KfJGAud_vNwH3j4pSKdpLzv0V3ynef3OvnkLG0mCzU1Aun5fOUoJa-AkzhLbMlHjhFTuwKqxN5EKb11JmVY95Xvlz7BmTlgw3BRJG-rCC03ZxjGg8UOiEdo_VfrOGxjfvDsybfX76rCiFQcugVIBvnr4RAw4SLVQ=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u6kntn4TOi65peqqnrCrKSMtiumhCZSJ_N52IvjLHOwtpcmSEWG-rNCHkMVZF3hyijGHorjujiPbyGpjCUIAnwcDNLQOM6IFNUo25yjFITxrq0SjkZ9ek3InPgIDPA5yfXuiDo7rqHySyVRZcXaQB4nsQ_q3o8NOWHRpeD7cxgZWbS5MBj-EHzoY3HTs2WC4h0DBSbvWq-zeRs4ivQ0XhEMHvtO-a6ccs-dn6tHQ=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tHrmc0Ic7YNM14pOGepd9J1zDwRoAp4aNFtWQPMGn0nhRAigP5Gsq916SKZ31YYwYA20b8HkmWNKjDw20hJN6UxGOQC48KiHLIG_vfHyX8XFvsZPWq5K1MB79VYVGt3sJ4Q5_BSW3CfPh_U6GvXYfIPusiaCaagp054_ciifHEu3-j5qF8NkHnE1AcMlaeoxRv6IBj=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v54W5uHDiOAZzDgb2IVB-Z4jdn6zJxgS8Ur81WxPB6KQIr_ueNlz78F7b0GN89xjyKNcp4k2euc9hfoq9yXvPMsRZlBHiwcYroiM8p2mvsbHK3ag-mqh48_O1HpNm7vommousHk7gySAQj97Hk8WLMvRN6vR2Rr31ZywZery76SqFm1z2INW6KcfUmZT6zXzKMBF0AfOah-lk842uM7uDhBLGNvs2s8SmFK0eNY035d6Kzd19yE_lNZuA0k4M=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ujNWixYvS2cxYTHCX42DwcWRT0bO5mo0Uq2V5pv7jaH5e8KISltrFIv6Q9hCcyblNCtaqjQZHftdruTVIlYF6h1fBpc5UGXZDGIDB2npL_atu-WowJpZstKVJ41anCPE1VtW4bz_PUEtk3OQ_xurpNqNEpKXMhW6Q_yrKvew4P7p0r9qWvWCHcZpttNBe5DisR=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v54W5uHDiOAZzDgb2IVB-Z4jdn6zJxgS8Ur81WxPB6KQIr_ueNlz78F7b0GN89xjyKNcp4k2euc9hfoq9yXvPMsRZlBHiwcYroiM8p2mvsbHK3ag-mqh48_O1HpNm7vommousHk7gySAQj97Hk8WLMvRN6vR2Rr31ZywZery76SqFm1z2INW6KcfUmZT6zXzKMBF0AfOah-lk842uM7uDhBLGNvs2s8SmFK0eNY035d6Kzd19yE_lNZuA0k4M=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =

what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb