Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vP4ex9XRDlKPX-pq_33Nbs6MXNAf-BCEGpU66fi4_1GUBrAwsA6SdDfVB_0m7FpUfVamCrY-dcEcEw4Gvy7A7nKXvcmCjfSyaYCEkHh_6IEgh8QiBYbBDsVeofAT7IwyvKimr6rWLe2FDRKKBAFCRp69L_9R8WAgSnS6oUs_JcGN39lt7BWtk0fEqjQW_oMFaIcjx7S9AbMVFRUlX0hXZ2oFnAd5WMftvCfx_5DhShHKhJ-zDD0pM92ay_plFZ9v-g_I7lJyLg_CyRippwsJ_JwCkEPiZNdFgX2l5Yu1nZOxXTcewxFvW8xvnAnKo8Zh7h6dO02qoXBdVKohSVqq-Wy4ZraGsYZSiaehGUqRaSWWIKHeWEWaA0WZi0hb5HO0pPRIq9xNB9R_oOjCvqTL1J6ssFRIKQpzclO1c_6WAEAhmaPPj8JzpCHoJ-mpT5zsDBHLMa8topU2JigMvsJENcWZtejjCbnXUOUAQxGxU=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_utFm_DimhACQ7B0Q-B_SGCf0_MZGdYvbZUUXosW-4Bz_So-wNnGphgLvQGIxydyc65A53wcDDVUOO08BU0fCTl_4BUjiXiecGNcOhAFe7nr3Ej68_Fe_8L6K6IgMYeMddYz_8JHY8Qxj45-Ok9jBwro2nO9QpF_8HalNcwGkzQzZI8B12uB1C7zr6dI3LCj56Gwmm6JtqxIE6pAnOWDgQnPTTo-_Lqx6O_RJ7cKGZMB8lAxMyS_uV9YJbPBAyoDg=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sN_fxHFO42tw-79E6r790WmaVMu9crQBhnEQ8FhVH4kT4CsQyHx6zu--1UwtSClh7siNcSigWVFtLrlRs8Pg0sD-9-ZEDtc7ZCIo163vQlm6ph45NPKDLkZxhVr8Vf9be68PSDmaosqhDLmax41zVTejGW9y1yHGOUuLix8PSRh4dK3Ic0m8CbiHAM9iqNnd4DPeSF7ufPXIpUgKI8WQ3XGf5JQMvscFj7LGkUKg=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v3i_Twn1_lBF9p9oKtrQEYyK4V5XLw5sLKNlwSxA12QiGXs7C2pj0HbQ-9PBWuO4MujtiL943xCrFPi8OIZI3dubiX5bYs5pEIp8Q0qAV9t846sWSMoaYMvglCjKdqihHqvEwx-vPRj4aLMUujoo3ufLvlCTQhwvWtE5SudOKVgnB7GALpBeUQVfuahDdpxhe4Yif7=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_urfF0wFcS2r-tJBT3c6E8lMz-uHIGhG02K7lTPjI-XcBZVxWqzJuB4HzwKcGeG73_iP-vi6jx_gdO4PEzrR0nYlsAUr6iTh9_pq7ZJe_GNrhVE1L35pm3WUbEdDHMBHfv6GPFoBc8U4mHOssBJQwyVWBWkK6zIRTQQnTxyBICEHFAao1ggqmD2FF6J7KLxVIUWGRWxY9YSFnuW703IrXzUR82hfElv88KDh2DCgttungzESoQAKJZlK-Z69LM=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vSreHkgyBxyJQ8YyiZqsJjcJQwCh3ovI0GCyc-hhkXkekRexS5uMPOWQhqiRhXJtjL1hzvu0XowLfe2gQH0iKfGkrRoUkYmM3e9k8wgvQU5PTC7YBH9beFkAnGL-dhDbK-prJANHLF8pbjAWqJU6m5MaQeIVRYWucQgmFjPgDoPcVmhvbcVnOdDtAIuluuqWhe=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_urfF0wFcS2r-tJBT3c6E8lMz-uHIGhG02K7lTPjI-XcBZVxWqzJuB4HzwKcGeG73_iP-vi6jx_gdO4PEzrR0nYlsAUr6iTh9_pq7ZJe_GNrhVE1L35pm3WUbEdDHMBHfv6GPFoBc8U4mHOssBJQwyVWBWkK6zIRTQQnTxyBICEHFAao1ggqmD2FF6J7KLxVIUWGRWxY9YSFnuW703IrXzUR82hfElv88KDh2DCgttungzESoQAKJZlK-Z69LM=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =

what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb