Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uMqoaq7CBYIdT9xAAIaHlDLSY_wqIwGDtGW4XndbKk_7xIRkregfCwGbSBoB8HMRYC9Cgg1Vomlrz8PW5_5DJIo4H4x5s-5zry4po2OZ0pgSFMnMNV2N1rid3R2uBTQw-xvJcjqnZnHXBOC2A7lY7nvqHyjc7XhiiqTh-tuG8RNNccWQVrZ9lbjC5k3sXGtyvRCl5yQ_6J5B9XOws-3genPYw8itK4yWtVmU7nkOp1l-Lz9Y4hFtoHg91REz0qGIRKoaVZGb2EfGcho4jHyo8A5ZR04sw6oWpO0jh2Osh9yc2Nargpht8dQ-JGE90kbSHdbIhPcylQScNJIS7oDpGcrMtR31mY9dFtMl-CEwU2ZVR71EeRHlBD38IUL38mFgII4D0DbuOSsowfca4W6GReRVu-ejDQjudc5YH4qeWHvsa-bkcBDIPVQCZiSxQ_pTEFiW66SBb-MVVwyBpOaunK-CrYa8my0znTXRGvQII=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tKpDUyN2wKIKpJDsp8EwURi83ShdlOBdobXxl6_3lzGPSLiwso8NDfSAU1cft-gtuB2NgOhLATZl40H7M_V0DNSv4rP3gYpVNFtrM_B0_xggyLILhOgSWt5QxlkKxu4ZDKWDi6mjRW4OXt-hjLLbKf2QqRKIgPNRfdxkQPVJ1W7c2wvgDsQnw1WePj-yAZg0Vfh_-1JupXxqYa7tMu-6PXykZtptPaGtfBEVqxx5gjiTBv0H_dfL5kLIQJaJL7EA=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sggE5UoHo6KYpSE5xmlxW121CNVlZ4_1ie_9E-HDmnwjEgDesWlWnhGAKXd1aBogsYaEbAPlixnu9L_JTZ_i0gnnuxRvNIoy8O90ZJhCkGaPYy8ZkviBbIQo7Xr0tIKKH2tGfHfxcPPsei66jyUd24TJbLPXSo6O2soG-dIrRBdaknERE8xMc27CXcQoA3N7i0bvB2rSHW-Yk48HrlvraKyOk5YxWYV3Otj_9FNw=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sdMBdaSYpTZOKwHPb6NyoS9747FSRn985dYO0FUilqHV5hfjrpGz_cRJy6wXUMspaa_zcUhXm5BktQg47cqti7iZLlTe1PE_VZ6vXm0GPQMWC_xhkOQfj9WRXvZ_2JzKTd-NVDgHIWzgBYAo6JJmUa2bhfk8YXD9SRK3_ROUMXAjx9uvU4FiSOKYerQMrETibVCvfF=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vRRqlbmJR7_mj-zwzQ-d-Vbiz-VSI0dqW5qyAP6p7y93Xvr-TshINgetLEM86qGVWJpqyLgnpGHCchyEzMWKZvbk860Ei_u_VDmMLOdmcT0a5C-yL5O2pTqll2NA8ZfXm3O2dbVAvRK-OSPamTGqTp_TPhF2SvcYSTVA1w32qHcK476o1Qpw8bM_jJo_T1PpZYGB2KzCv75XdkW5wU0I3qNhyhfoavRcmhHo8m4XNwWCCMcTP-jQDifUzQIJc=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tc9ThBCH9DxI9sw7CaMkTF-Di9a2v2TK6gHzGOn0JwnTDIDGjwql2xTR7uhph-I5P91RCRggXukHiJYIponPnxzsru_DlQCceD2oNYf_X8XPV4dm0sXdr14s89rNpFom1bPwiB4AX2Dv5N7mTtrvEQXIDQmLzwyVEUmh8QwF6MftP6GDzr-NDqGZ-ipf91Wznd=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vRRqlbmJR7_mj-zwzQ-d-Vbiz-VSI0dqW5qyAP6p7y93Xvr-TshINgetLEM86qGVWJpqyLgnpGHCchyEzMWKZvbk860Ei_u_VDmMLOdmcT0a5C-yL5O2pTqll2NA8ZfXm3O2dbVAvRK-OSPamTGqTp_TPhF2SvcYSTVA1w32qHcK476o1Qpw8bM_jJo_T1PpZYGB2KzCv75XdkW5wU0I3qNhyhfoavRcmhHo8m4XNwWCCMcTP-jQDifUzQIJc=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =

what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb