Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_viMRJruYcPcaLZUKdJ2m3iYmxRBJCaMEQwaFhjJtovP4Vy7fHVuFHn8g78QxDGKxfjhvNpWPTlotKJzA0SWnWtLjW3rNAuAqSfHsOgRmaEBlg1GMursSt0LK_-tGWNA_x11PldrGmSgJBOddlzcdbtvVjp7DNPamPJMDaikYYCfCDLWJAbsH4d3clb9xBjDnC4Vv6DMPmfI-qrPaMJgMgywi9Hg0FFyxkfnlENgKriy1kK7jXQA-f-XHlZZuxS4IGVc9Yb8A27HJgqcMEjDk2ECYEaieR84hnQwHT5qx6GKco1IQw_6-yEyyv9oU-DShnEUdkk6R1X4XrmcLKBCp5Nh80Gy4o0DXgzV832Cu-Prc4mAojkDsddR13lQX4XQgBz45EyT-IYQ5-qNSE3fV6y3rHksPdEss4OUCIIy2USvYRWmJEDV4J7uaWg512m8QySUfdMmYgUfIePMNURUD9F9c41NKwZcn4k_AsVctg=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sBAFNgE00A9NkNGhwKzIx19WySOWSrgUThiK8P1z_ag7_4Ok9W-E3Z8mRVhOSExRbgzfZyMCpx3XIj3zpzZkW67DPCEcgXl_U904Y-HNK_VZ4auk5aL3jkvM8C74g6EbtvGrgdwumZ7fdlRYwyRy9i2BpRroJLjHmOuUti_kEDI1ZiLpegl818EdyNlN-cAQhDFPe4UqoBym4mIS0kw9VFpAvvLvhVg1xuD5R8PhSEb6zpPcGVyMK43lppFbQDDg=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tsEpSJrGLMVKYxUMPGhub5OQpfqaiA4yyH_zLKRBlfksWG45Ut-MFXZq0AGwiPS4uUbycKUMiyK16GpgZ6JOcXBDCtuPgXYGN1XcTCf_OdIyP8XFd5CjHzr1xcoFL4iiOVAWYGwkQAz0z7AZfEYQpg9xg1Sohs2idfXbN6o03Z6JrI-nDtePGN3u0FeO7Zt-mMAZa3DSsKEbPdXlp0Frh6TeaKUaViWqIsb3Xz3Q=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vI_uDe_EqRxbcDR9aXECD1fFa4x6Wb_HoFEiRoKkxPgol3s6eO_fNtDiQLsdsffcp4LOEM6opjkEfy_asXd6nbEJSjJ_YOxhsfc9YkqY25KsxxVEaqetjNkw5Wsv1cXHiySSn0NE3Q4zInVtmD5IcyyFwgFSaXS_vp7PhXlqYyglH8p-weBntOC4vE_F_tdLBV8DL0=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s-3NFxm_79uq2u_9CuDL2RqQvJ9IAKa1bdEmKe_F3QyB8bxUtXM5q-t7fMDrFPInYwHcjTDnM-Ga915w9b_tn593ltOmreWitYcLr77lhgLPFwcY-n7z8PdjQ6DbeCpq8VSxGCKn0ftyoLnuC7SYOItebyFLrLwhVhnP5smBKoFmlJ4-1KnGpAV4Di4uAEISC3sXbaXHpgZPafyTIKvMYlPJrod2-tBZ95mplkhJjl5h4_Eurx8S9YNIrAqRk=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_senqibKB66syPQqTYy0pYCkHMnpUYiS14u-iNhmhItSA81dRMRr05qAbO6xUPFYcxNnPioB9Rc2IFseT67x3OpW6bnuRFd_fszEJciX-7lkGrgu4GKMM_bm7Uxa4qSlt4Z5etAMh8e1rfxRoVWpWbB6OPMgPMUvp5Fm2_pS_a9Wldjl2Fe-k_57zkoDO-CX2sV=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s-3NFxm_79uq2u_9CuDL2RqQvJ9IAKa1bdEmKe_F3QyB8bxUtXM5q-t7fMDrFPInYwHcjTDnM-Ga915w9b_tn593ltOmreWitYcLr77lhgLPFwcY-n7z8PdjQ6DbeCpq8VSxGCKn0ftyoLnuC7SYOItebyFLrLwhVhnP5smBKoFmlJ4-1KnGpAV4Di4uAEISC3sXbaXHpgZPafyTIKvMYlPJrod2-tBZ95mplkhJjl5h4_Eurx8S9YNIrAqRk=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =

what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb