Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of ?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore, ...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if ,
and if ,
Now,
a. when
therefore, denominator is positive, ( because )
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain = or R - {0}
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore, ...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if ,
and if ,
Now,
a. when
therefore, denominator is positive, ( because )
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain = or R - {0}
what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb