Solved example on fractional part function
Q 1: If {x} and [x] represent fractional and integral part of x, then find the value of
?
Sol:
(expand the summation)
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
![[x] + \sum\limits_{r = 1}^{2000} {\frac{{\{ x + r\} }}{{2000}}} = [x] + \frac{1}{{2000}}\left[ {\{ x\} + \{ x\} ........2000times} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tHZuEYT39UXzkF5OVW7oAovkB8koE4J7XjbM6mZhqJE2JVKECwkHEB9LCbrjTc1lvhNImuKonyweWj8_5V_xO39C65KQJYtvnSlQMMRQrmqETwF51Ucsp88ip-N2Rk7GxBjCJu24joF5TjSenrz8Q652IPbgT8ev2VZxtCoIzpq606V4wQCnTE_WE2pZJ4dwWZbfBzVB44Ru9ugfKYRfc9Vgn2MRZ5QGqF-nbwrqbQzbekqzuoU_B73ySsWVwGFilmPWs1g87KgKhUhZ6eoakzlBcL4s4ssSyX02EXXjv-Fuk7ShH9eYzLPTmJn_pHIJVGE8D7vs6oQoIS7mkYyT15_PhB7ShjW6Dv6OQM2LMkhC8bDsPPQrerKpMFcp9RJqJEAZOyjTSQwv-HtbHHfeZiZMxBzMR2J7SBg4QJuBtZkQOWGohZeWQ7Id3YA71YKBlQkfGRigivfz99hIwjIWkPCxqCb1EiP6GvFrTNEVw=s0-d)
![= [x] + \frac{{2000\{ x\} }}{{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_saiD0RspE2F1MuGfkl8p3mwLCNPYDpQgHgq1pEyPh68GL9gRYpMrzdm--4m1MSlP-XHk3te0U9-_H-Qxzeye7r59CoBCNcNwb3khXLZdxdFBm7Da61CcB9ycNoWQfbZCHhZ1fQOF7ieNpNTHprbEiUVk_6i2BEaPTOhpbByb0_-8Xd67KWGS1kueV0Tk8G5KJOfaC4nj6FSQIiznlrCIuvByye7Jt6LYksM55jc3EscbJwevVNEmfaS4Gtpb27Fw=s0-d)
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of![\frac{{[x]}}{{\{ x\} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sRNZk3d_Rw1rA--RrOJ8NZ69B5gwQfg5ouu7ly_69_Bo2WLuwxoGA_Hr7Zn8o_80U4qdnsuy1B8OsDAwUyh_nDuc4dNpYnMEE8T3PMAvo_nCuRvDYh3w7Hrh51SZfzy7IStnsNm29IcupYb4IvCwV0JGHqXyGNXUt5ouuUtHIBvDYqaKxrC7hBfkNTSp__BMbmtWZgMhMx-7YSDqSzBMT9-xWESvKjy8IKKtdvgQ=s0-d)
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,![[x] \ne \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_umvfx0GJeY0konZHQqWg2pFXBySLm0AcduY1wcSx41ywzayQZAV-TQ0ZLJE4i-UleRu74Msa6tlJsAXtXbeUfXV-aTR-I4iTYQP5oKWb_tHFoAjxt9DvhK6RrqKlKqjwhkF7qgmHbT-7YEj1pwOKhNqfD7ilINpLZ5_YdRgfCk1ZQJpFUkKf_3lN_OAJVXeZrH8vZ1=s0-d)
Integral part is equal to fractional part only when x = 0
therefore,
...................................... (1)
2. We know that root is only defined for positive values and zero
therefore,
or,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vtR1Uysu5nVXG2O3w5euBGZgRsydBjMUQRMO1EFxwY0ehxkanBj4XNm88ZHVs-MfLNfl-m5tU-ymyeXQU8pmdXIHB5uSZL7HwBox3FYT5HcoYW67-VtKTWe3iIo2EPGFovwLbpUfthDmvnsplHLun3HAGD2nO0dUZSCre-035e3gPZSaqNcj7SDXrvNC7u5rJO62wu759GD2WGKtc3llCwYxLIwnPEY3dhS5sW5QynhvrFERJOwll5O5JcyHY=s0-d)
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
,
![[x] > \{ x\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vNi_7QcJlinpqvRtbI5wq9Ebc8IdAvAXbDO8AwMpsbhI_SFj2d1X6BQoO363Tz9dR9q_dH_svq_K8iwpvXYtYHWDIwxiVljR10WnGNvzugPtW8YSY_hwW2TTLZvt655a3MZPYHgxfChS4gy3KpYIDGOz8GhPc9o6lHI2A5iPnCaYY9vZyTqfLsbe65GNSL8WeU=s0-d)
and if
,
Now,![\frac{{x - 1}}{{[x] - \{ x\} }} \ge 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vtR1Uysu5nVXG2O3w5euBGZgRsydBjMUQRMO1EFxwY0ehxkanBj4XNm88ZHVs-MfLNfl-m5tU-ymyeXQU8pmdXIHB5uSZL7HwBox3FYT5HcoYW67-VtKTWe3iIo2EPGFovwLbpUfthDmvnsplHLun3HAGD2nO0dUZSCre-035e3gPZSaqNcj7SDXrvNC7u5rJO62wu759GD2WGKtc3llCwYxLIwnPEY3dhS5sW5QynhvrFERJOwll5O5JcyHY=s0-d)
a. when
therefore, denominator is positive, ( because
)
so numerator must be positive or zero,
therefore,
...................................... (2)
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,


But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
or R - {0}
Sol:
We know that {x + I} = {x},
[for properties of fractional x {click here}]
Therefore,
= [x] + {x} = x
( since, x = integral part + fractional part = [x] + {x} )
Q 2. Find the domain of
Sol:
since,
therefore,
we know that fractional part of any number is zero when the number would be an integer.
=>
so, Domain = R - I
Q 3: Find the domain of
Sol: Know about domain [click here]
Since,
for f(x) has to be defined:
1.
i.e.
or,
or,
Integral part is equal to fractional part only when x = 0
therefore,
2. We know that root is only defined for positive values and zero
therefore,
or,
Consider, [x] - {x},
See the below graph,
Observation from graph,
NOTE THIS,
if
and if
Now,
a. when
therefore, denominator is positive, ( because
so numerator must be positive or zero,
therefore,
b. when x < 1
denominator is negative or zero (denominator can't be zero)
so, numerator must be negative or zero
therefore,
but we take x < 1
take the intersection of both, we get
x < 1
combined (2) and (3) i.e. for whole real number line the inequality exists for,
But from (1) x can not be zero because denominator can't be zero
Therefore,
Domain =
what is the common factor of the - --
ReplyDeleteA to the power x plus B to the power y = C to the power z
A^x + B^y = C^z
Deletelet common prime factor of A, B and C is C
so, A = Ca , B = Cb and C = C
further let x = y = p and z = p + 1
so, ( Ca )^p + ( Cb)^p = ( C )^(p+1)
or, C^p.a^p + C^p.b^p = C^p. C
or, a^p + b^p = C
so C is common co-prime factor which is equal to a^p + b^p where A = Ca , B = Cb