Properties of Modulus & Argument: Complex Number

Properties of Modulus:



Modulus of z is the length of vector representing z form origin to the point z.

1. |z| = |\overline z | = | - z| = | - \overline z |

If z = x + iy then  |z| = |\overline z | = | - z| = | - \overline z | = \sqrt {{x^2} + y{}^2}


2. |z| \ge {{\rm Re}\nolimits} (z) & |z| \ge {{\rm Im}\nolimits} (z)

Since,\sqrt {{x^2} + y{}^2}  \ge x ( equality follows when y = 0)
and \sqrt {{x^2} + y{}^2}  \ge y (equality follows when x = 0)


IMP
3. |z{|^2} = z.\overline z

Since,
{|z{|^2} = {x^2} + y{}^2}

and, z.\overline z  = (x + iy)(x - iy) = {x^2} - {i^2}{y^2} = {x^2} + {y^2}


4. |{z^n}| = |z{|^n}n \in Q


5. |{z_1}.{z_2}| = |{z_1}|.|{z_2}|


6. \left| {\frac{{{z_1}}}{{{z_2}}}} \right| = \frac{{|{z_1}|}}{{|{z_2}|}}


7. |{z_1} \pm {z_2}| \le |{z_1}| + |{z_2}|


|{z_1} + {z_2}| = |{z_1}| + |{z_2}| holds when Arg({z_1}) = Arg({z_2}) i.e. both the vectors are in same direction.


|{z_1} - {z_2}| = |{z_1}| + |{z_2}| holds when Arg({z_1}) = \pi  + Arg({z_2}) i.e. both the vectors are in opposite direction


In general,
|{z_1} \pm {z_2} \pm {z_3} \pm ....... \pm {z_n}| \le |{z_1}| + |{z_2}| + ........|{z_n}|



8. |{z_1} - {z_2}| \ge \left| {|{z_1}| - |{z_2}|} \right|


IMP
9. |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )

Explanation:
Since, |z{|^2} = z.\overline z

Therefore, |{z_1} + {z_2}{|^2} = ({z_1} + {z_2})\overline {({z_1} + {z_2})}

or, |{z_1} + {z_2}{|^2} = ({z_1} + {z_2})(\overline {{z_1}}  + \overline {{z_2}} )

                       = {z_1}\overline {{z_1}}  + {z_2}\overline {{z_2}}  + {z_1}\overline {{z_2}}  + {z_2}\overline {{z_1}}

                      = |{z_1}{|^2} + |{z_2}{|^2} + 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )   [Since {z_1}\overline {{z_2}}  + {z_2}\overline {{z_1}}  = 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )  (? click here) ]

and |{z_1} - {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} - 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )




10. |{z_1} + {z_2}{|^2} + |{z_1} - {z_2}{|^2} = 2[|{z_1}{|^2} + |{z_2}{|^2}]   ( Property of Parallelogram )





Properties of Argument:


Argument is the angle between the vector representing z from the positive direction of x-axis
The Principal Argument belongs to (-pi, pi]


1. Arg({z^n}) = nArg(z),  n \in Q


2. Arg({z_1}.{z_2}) = Arg({z_1}) + Arg({z_2}) + 2k\pi  , where k = 0, 1 or -1


3. Arg\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = Arg({z_1}) - Arg({z_2}) + 2k\pi  , where k = 0, 1 or -1


4. Arg(\overline z ) =  - Arg(z) , z cannot be negative Real Number because for negative Real number Arg(z) is equal to pi and so Arg(\overline z ) will become -pi but it cannot be possible because -pi does not belong to principal argument interval.


5. Arg\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \theta


then Arg\left( {\frac{{{z_2}}}{{{z_1}}}} \right) = 2k\pi  - \theta   , where k = 0, 1 or -1



Comments

  1. In the 2nd and 3rd properties of argument , how do you determine value of k ?

    ReplyDelete
    Replies
    1. K is any integer value that makes your answer lie between 0 and 2pi.

      Delete
  2. so it means that there is no property for arg(z1 + z2)?

    ReplyDelete
    Replies
    1. You just don't need any new formula. Please go through the magnitude and direction of resultant of two vectors, you would know how to find the argument of sum of two complex numbers.

      from resultant of two vectors , we get the angle which is made by the resultant vector from the x axis as

      arg(z1+z2) =tan inverse {|z2|Sin[arg(z2/z1)]}/ {|z1|+|z2|cos[arg(z2/z1)]}

      Delete
  3. Write the properties of principal argument

    ReplyDelete
  4. TINOCULUS HOMING TOMATO REPORTS AT TIGERINA TIGERINA
    The babylisspro nano titanium spring curling iron TINOCULUS HOMING TOMATO REPORTS keith titanium at omega titanium TIGERINA TIGERINA. 3.5" by TENORINA, 5 oz titanium security - 3.75" X 10" / 1" $9.00 · black titanium rings ‎Out of stock

    ReplyDelete

Post a Comment

Popular posts from this blog

Fractional Part function

Geometrical Meaning of Argument and Modulus - I: Complex Number