Some Solved questions on Complex Number

1. If  |z| = min { |z - 1| , |z + 1| } then

(a) |z + \overline z | = 1/2

(b) z + \overline z  = 1
(c) |z + \overline {z|}  = 1
(d) None of the above

Sol: |z - 1| = distance of z from '1'


|z + 1| = distance of z from '-1'


and |z - 0| = |z| = distance of z from '0'


The above equation  |z| = min { |z - 1| , |z + 1| } represents,


either |z| = |z - 1| , when |z - 1| < |z + 1|


or |z| = |z + 1|, when |z + 1| < |z - 1|


i.e. whichever is minimum in |z - 1| and |z + 1|, |z| is equal to that.


When |z| = |z - 1|


i.e. distance of 'z' from '0' = distance of 'z' from 1


implies 'z' has to be on the perpendicular bisector of the line joining the point 0 and 1.


the equation of the perpendicular bisector, x = 1/2


similarly, when |z| = |z + 1|


implies 'z' has to be on the perpendicular bisector of the line joining the point 0 and 1.


the equation of the perpendicular bisector, x = -1/2




   It is clear from the above figure that when z is on x = 1/2 i.e.                  |z| = |z - 1| then z + \overline z  = 1

and when z is on x = -1/2 i.e. |z| = |z + 1| then z + \overline z  =  - 1


in both the condition, |z + \overline {z|}  = 1 


Therefore option (c) is correct 


Also remember the relation shown below in z , -z and \overline z  , 



2. If |{z_1} + {z_2}| = |{z_1} - {z_2}| then ,


a) |\arg {z_1} - \arg {z_2}| = \frac{\pi }{2}

b) |\arg {z_1} - \arg {z_2}| = \pi
c) \frac{{{z_1}}}{{{z_2}}} \Rightarrow  Purely Real
d) \frac{{{z_1}}}{{{z_2}}} \Rightarrow  Purely Imaginary

Sol: Remember the vector representation of complex number, therefore addition of complex number is represented by one diagonal of Parallelogram and subtraction is represented by other diagonal.


but if |{z_1} + {z_2}| = |{z_1} - {z_2}| i.e. both the diagonals are equal than the parallelogram must be a rectangle or square.





therefore, angle between {z_1} and {z_2} is pi/2


=> |\arg {z_1} - \arg {z_2}| = \frac{\pi }{2}


therefore, option (a) is correct.

Further, 

since, |{z_1} + {z_2}| = |{z_1} - {z_2}|

 \Rightarrow |{z_2}|\left| {\frac{{{z_1}}}{{{z_2}}} + 1} \right| = |{z_2}|\left| {\frac{{{z_1}}}{{{z_2}}} - 1} \right|


or, \left| {\frac{{{z_1}}}{{{z_2}}} + 1} \right| = \left| {\frac{{{z_1}}}{{{z_2}}} - 1} \right|


let, {\frac{{{z_1}}}{{{z_2}}} = w}


therefore, \left| {w + 1} \right| = \left| {w - 1} \right| 

(represents the equation of perpendicular bisector of line joining the point 1 and -1.)

since w is at equal distance from 1 and -1 


therefore w must be on perpendicular bisector of line joining 1 and -1 i.e. w lies on imaginary or y-axis.

i.e. |arg.w| = pi/2


therefore, w must be Purely imaginary

or, \frac{{{z_1}}}{{{z_2}}} \Rightarrow  Purely Imaginary

OR, 

When, |\arg {z_1} - \arg {z_2}| = \frac{\pi }{2}

\arg \frac{{{z_1}}}{{{z_2}}} =  \pm \frac{\pi }{2}

i.e. \frac{{{z_1}}}{{{z_2}}} \Rightarrow  Purely Imaginary


so, Option (d) is also correct.


3. If |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} then ,


a) |\arg {z_1} - \arg {z_2}| = \frac{\pi }{2}

b) {z_1}\overline {{z_2}}  + \overline {{z_1}} {z_2} = 0
c) \frac{{{z_1}}}{{{z_2}}} \Rightarrow  Purely Real
d) \frac{{{z_1}}}{{{z_2}}} \Rightarrow  Purely Imaginary

Sol: Since, |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )  [for explanation click here]


  [Since {z_1}\overline {{z_2}}  + {z_2}\overline {{z_1}}  = 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )  (? click here) ]


therefore, {z_1}\overline {{z_2}}  + \overline {{z_1}} {z_2} = 0 and option (b) is correct

since, |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}

and from vector addition, vector {z_1}{z_2} and {z_1} + {z_2} must form right angle triangle (according to Pythagoras Theorem)



therefore, angle between {z_1} and {z_2} is pi/2
=> |\arg {z_1} - \arg {z_2}| = \frac{\pi }{2}


therefore, option (a) is also correct.

Further,


since, |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}


or, |{z_2}{|^2}{\left| {\frac{{{z_1}}}{{{z_2}}} + 1} \right|^2} = |{z_2}{|^2}\left( {{{\left| {\frac{{{z_1}}}{{{z_2}}}} \right|}^2} + 1} \right)


or, {\left| {\frac{{{z_1}}}{{{z_2}}} + 1} \right|^2} = \left( {{{\left| {\frac{{{z_1}}}{{{z_2}}}} \right|}^2} + 1} \right)


let, {\frac{{{z_1}}}{{{z_2}}} = w}


therefore, |w + 1{|^2} = |w{|^2} + {1^2}


=> angle between w and 1 is pi/2

since 1 is real number and lies on real axis, w must be lie on imaginary axis

i.e. |arg.w| = pi/2


therefore, w must be Purely imaginary

or, \frac{{{z_1}}}{{{z_2}}} \Rightarrow  Purely Imaginary

so, Option (d) is also correct.






Comments

Popular posts from this blog

Properties of Modulus & Argument: Complex Number

Fractional Part function

Geometrical Meaning of Argument and Modulus - I: Complex Number