Properties of Conjugate:Complex Number
Polar form or Trigonometric form of Complex Number:
![OA = |z|\cos \theta = x](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vMqn_b6ZgDju9MYOm0oosAZBfNgmwSJghq40TX7guWrFM2mTn5bPYJPvz0VdRvc8uevuXCrXQsNb0YzmoMPnH44gv8Oc-S6sJBwU-NqfeiFUwtUk53ME9kBt10MQV6w7rhhGuAmWQoXzio8JH9NMgxWtRh1IEM3ijsawDLJI_yUgGK5tsY1e8k4KBQmn9WGoLBMGTnxmNtWpYRUg=s0-d)
![OP = |z|\sin \theta = y](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_viVsBoAzHN_KETgTCS8heHBuMcqBqVGaIUrFDuaLGBJ1SR82uRgfykaMYd7HJzixtk_wkZkAjb9TMbkpaa3zqSbE8I2SX-k5VGpvHeD_gs1oIZO1T7IrwYlxy9qZRFM0XcrE4yZ3WQV3hBw0zRJfSEbNvstQQrbcqhcgY6jVFUvTwjBoOMCsZEnH5HzENkQttHkqV0104Ingx_=s0-d)
Since, z = x + iy
![\Rightarrow z = |z|(\cos \theta + i\sin \theta )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sZBMBpF95MzWhSZiynaeEr5jptzPukR-3SlkO08DA5nGdUXO0TqdCpllx3nWmp6blqQW0S85mMUJpnlXyGbGOKCkGqCQNJiE8c3LZW4abtRuNQUyEdG-ntWt4K7oPCMZ_8lhTjh8jQpNKYDY0Szc018flhhMBa-SQiFLttCrkBR8SEMPFoGnkLAeniX0Y3Jt-uMGWTxjYYc2Vd03vrLtWIquuiVxqkSI_w8LSoAjMMOCMrjoxb2dZVOc42ow=s0-d)
![\cos \theta = 1 - \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta ^4}}}{{4!}} - ....................](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sdXGRBtCwYurXasSZ9iQaDu92HCsblh95NZE6cSkWDYZO5KjpVdwm1dTMnQhuPG17b1NgYxE_2Hc3yRgUaNiCsSEvzjfU2Fz1EoNtAv1KT_YbloqzWUqW7NDgc1ULq6ZmOBw4-_m-qWehHpTcZfBCbdF-43FoDiXSYcEi6Xmvg3dppmRssC5SPspKaqgIuLJlX-ql4hSDrBVf-SZpPwX6njtAwO9Z5j7RYt22s_r_X5zZguZqNsPNZ-IRy0A72zmtc6fXYDTlDpMdTDTTKXgydkTrBE8dWExdhnXp1sN5P5LtdGIo9TtopZIVm-x-zwuqVs02LrntQ-UzY8oyGG-HW8VKzrSH7dXxB8rhNqnjAR-J1pn-Q=s0-d)
or,![\cos \theta = 1 + \frac{{{{(i\theta )}^2}}}{{2!}} + \frac{{{{(i\theta )}^4}}}{{4!}} + ..............](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ssPc_fnSftfArhKsQYlQ9qSJ9umNYU4lNUtNiKAPdiY2Qsz3BP0jCQ0Q0crIX1Ub_5rDDJV_88cae7rkYcxHfPW_c5AkGX86Oad5_TqmPmgy1pYHgFvEtKSD5tGsKibUeSkWGmtfO4HMi_3OMB0GqWWbKD6yvccfddCnmgQ9yOQFbMEoa29nwjHVDnuoO_Q0ubx-DCt09uU-W6GqqsyBJedeGEvIsqpgvzK0fEgQmtEAUG90IBfeI-ChuiOi5fKZrgi3Y8KuhUsDCQqb9y6WGP7KBamxlXtn09HxDbftvmV2DAJAA1AaOd984MdcP2AILjdEtOdzLG1I4NfY7rN6i5PAvnIRXvilQVNIuu96v4txL8Hz8kQAcVFy76RlmwgDVXdTsTGQ=s0-d)
![\sin \theta = \theta - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^5}}}{{5!}} - ....................](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u96BIOLPn0WSTB3rrQyEaOyFR5lGozkR2nLn5PEY4yuM3Ksoqwbl8q5nDuJTnM9hOY9ZKdq_Ko9RCbAHAMUsUNTU5Uql4Q8Yd-hnCpr9CnklMEj_u2scJL6uc4BFKqXQ67tQzQ9RDbI3v2IUAIt2QqxD3w00Ntwhjyd4JvefTlC4jFCiFkNEUBwo7Eworr5iD1Po5jUOzGFawbAYiV__8agdE-BM12MvAkRoNrwiqwzI4Bmq5AMNdUkKk3yJbgsunt9IxKRsPoA5jXL-pBFgx4L3ne0InrhFnmAx2q8CN18RHrEDCGvwJZT2LSJJIrRZUAaIOhhb8FbYkPW6OPo-1T3ozieHMAhlX5eNThv2-NVjeLM_7RgHjM56qJprQ=s0-d)
or,![i\sin \theta = i\theta + \frac{{{{(i\theta )}^3}}}{{3!}} + \frac{{{{(i\theta )}^5}}}{{5!}} + .............](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tR7hJPxpgf3qJdcyuOvXoPwKMV57q-Ed6f00Mwv3ox2kF6zv56HWroPRqGxApPqJAGaVZaxgdhCZvhg4Bkw6zz7Xj13FrpD6fqy-62lktiSCFfXh2SDSxV3k3sGbeAdl60rXBlX_XlZFW3m7DOf6HJrl4Sg50UwpEltjGB5rTCYAfn7NlNX3j-skLNjMMxIreX2Y8mnojntDOrr2-5mc5LoIq35O7sJny1xGxAeeemMPiqPyY5GwLLLGQS2_ZEj4JrOmf6NYbTUCSvKdFLselt1uJ0Vk4RHpYhJ3U1bBz_TdBhB-rWSfNMRZxlHq1dx6nktC7sZEC5FWNJ2jrc5U9bJ6GDZEz9qaOP-sZTRRf4JaxgOiYagaeG6_ejC6UfEcVRN-HoXT0xwm71Wa8qgQ=s0-d)
Therefore,
![z = |z|\left( {1 + i\theta + \frac{{{{(i\theta )}^2}}}{{2!}} + \frac{{{{(i\theta )}^3}}}{{3!}} + .......} \right)](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tgIo1ZtIA_WN2uq9iLDhHZ-WdNJiWoo5KkRDp8U24O4z17kH8s_L2VG07st9KghNT7djYwVR_cUL3wzykCAsi97fRXEW-7j0pf0AwHu0WY7O7ONPzvDAHriPdBsG4PNBucZKa51VZl2W_0rWXonOYDxq-cL3SHCaFhYLkikNmLIVy4APSUQ49Ol08o8pzltS9q96b0EJA14VzUfvclF0PdP8NTGluZMlqu_SHod-xSh9bm6gXaCeHc7R1iCuS6YXMRB7z6HzrQmT2mR6kwz9ktp-Zj36ifkmmhaRcdT_00sQ5ruR9Etw_X2fior7JW0ffxtxA2Pvc7qn6GBlQTyiorym2nszkD-FhI2LSctm2ynGkSPJpRmSKoKqZXCuPA56mzz-4ueYrBKRCFiVfJGb8ju2GIz7nIpL_DpQDXpA=s0-d)
(Euler form)
; ![cis\theta = \cos \theta + \sin \theta](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sc2mGW7uNpg80qaisAI3LZTskJz8CCtaEHwnFDC1U0D-bQn5ONlF_uP9ybgQFUo5XFY6utorq1TkMNfYd5_0dOoZ4JVMVoMR79pS6Qq-pXJYuaAwiwY_ZcfAjYUCCHBGN1Ens8e7mJhKlC_6P6aUVbuzyJ2lVhdA5jCdBTpu--FlAoI2PBJXS4acDqf9xPt6EgttsYMfk-xgRir3wt8FlcYbciTgoHkqiKc7Kdkw=s0-d)
Some Points about 'i':
1. If we square any number we will get a positive number.
But, imagine there is an imaginary number 'i' which when square gives a negative number -1.
![{i^2} = - 1](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tstULvc5EHutTrYLdhmzpLQltMTepNBQT_OwbCwhuEOObd99j1n12tNi05h2BjK_v8Pum0VxeaGtziiGeidt8l-1L2WSXm-QXmK_I6G4oBxgsMt0ThwdaESbH2HBVtw_FFqV6k3mbLOG6m386m3gj2P48CMUCC3LGAr_6jfFXwBsPv6tL57H2ySj-c=s0-d)
then,![i = \sqrt { - 1}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vZhRXXE-L7Ee2A8X48hdekizFVEG8Y1h1E3nQd1nl7e9Jm0gPIW6CVx6bvrawSvUEJWJHNLsRVsJoQcuQekFwI3IN__Pq9gipdDLguXdlJZ2nwvCFqcEEM3KWMdh1A_wrhOdw3zWYJEocJnkpDVT3N6l2GoElgk4q2ucDMid4kn0_Mw-15JubvfsxMfZfdjf0=s0-d)
Remember,
![\sqrt { - 3} \sqrt { - 4} \ne \sqrt {( - 3)( - 4)}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uePj_sxpuyM-J-2v05wQ1edtOYZwM9a5ezLjPPcFydpA8oTFP_tnK49XJoMZOwR09voEb2Onoi1wW_BofCsSEad5HvMEGjTmCOUcUN-CMY8XVnCU-KQGFUkak70jywL7W8pZCFG9xv1b1M5GnBQHEDJlFegy_v7XFi5JgTe3Hg7OBxm_PnCz2Us7O-YxD-J1VnWnQoW6U_qdqXTi6y2Z82oNR_bieUX5FHZV3WcW28KjrT3Hztzq-effism_4lr08=s0-d)
but,![\sqrt { - 3} \times \sqrt { - 4} = \sqrt { - 1} \sqrt 3 \times \sqrt { - 1} \sqrt 4](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sgxwkE6eAQVp6MJE-lGMO7WiO75sjv3wEDGen1es_rlEAXXa4Qm20KaXArA-l-WYY2mNJ4QqHmzEkp89yYLEV-BGANKb7Ext1h-QKBn7J8M_3K2h8VBkxZf_lp8W4OlGx-DlcwoUzMGLYnUy6oh6Zi-nk7t3xFnub7XOJ7hdbSQF4gyJk8yY49a-RQCFzcJsD4VOxnFZf1Dgh2FxIwYlx0ou3PxnKiPQhrGoVAA1ulyaKYVtx6_UJYTVxign7jj3xoey5Ee2RQObXJi4SdkdcAHn1QqaERU2Mejq_S8mspCbCXj56SCcDwk0u6jOyWwtgm=s0-d)
or,![\sqrt { - 3} \sqrt { - 4} = i\sqrt 3 \times i\sqrt 4 = {i^2}\sqrt 3 \times \sqrt 4](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vjirYzsaKSVlfOwZO3J10CByrMWg7HVoF4STVvDa715qmpIDY73rWEHjOrRoas9YTNZgrZC4PUEcEFpSp0FGlKipP3fI32nsgZGJnA5RgIJypTZ2tdr9t8rDGYkJAPklxU81WbrP2d1DP8dAl-zu-0XoFhH6bEDJYVqY6b2IouJteTBvmF0NDxw0pxZeYVC8mROsQLBen40Nf4pnBWge7yCpWle-cwITT24Ca5OVnmO4K5UGDqOpZwDqRKIfcyoiyA2TCe_rPOCHhhk7oXZAVt_LKjJQpFxw6Q4_JNQLKmTK8wUsmCu8oaYrvQbTtcFLsT=s0-d)
or,
( since
)
2. i = i
![{i^2} = - 1](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tstULvc5EHutTrYLdhmzpLQltMTepNBQT_OwbCwhuEOObd99j1n12tNi05h2BjK_v8Pum0VxeaGtziiGeidt8l-1L2WSXm-QXmK_I6G4oBxgsMt0ThwdaESbH2HBVtw_FFqV6k3mbLOG6m386m3gj2P48CMUCC3LGAr_6jfFXwBsPv6tL57H2ySj-c=s0-d)
![{i^3} = {i^2}i = - i](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v6ytQeg1FW3HTN1PizUyh2CYi1EVvXvubB9byx_AxL0uRHqu--JhgWq8rP7QzP_fOLnXvRq4AaLwgiu5x9wcC212YR_a_xZTQmQELW5vnBoqLhF_g1bxwntM817XaONt88WZKcJGKhEIL3d2FI_9gQGGa_YzFBu2D_n5IXTclIgAffT0aC3xuSbs2Dnz8peh_Z1Z6N7A5NhiWndxw=s0-d)
![{i^4} = {i^2}{i^2} = ( - 1) \times ( - 1) = 1](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_umVO0RwP3tk1dhuoJMjPLVtX2vN5z0nectE207RkvzkfkcvjbolmAKzrTbS51LCKf0eX-ePiCr3gd9crs-1wS6etHnSNEDs7dRU5d_1KqrZrCVHdjvrWPWCRJ3FqK8Wdx2OpmAdJUmw7kE0Go4twSjPaXPK_Ie7EkAhlpwddCuY-14EC5gzeBcLLrKtqHIjupZdwR3DiFBTWcywuqiRokqlwFHuz3XVg4wtrUH9cEMfOm5WWo7P2B7GfMYtsf21g=s0-d)
![{i^5} = {i^4}{i^{}} = i](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_stjfIx-cK0bB4EXvfhESrKatuFlESefln-IfHK5ZlgIOdX9KyLuX8DSVRo89U90KiF9WZ9V5tlFrq4XJgTzDytiTCAnIVYKtrKoetipeFaakzuLhuOScMk0G7xsTWK5qlw-uR6pR2YZalyId3_PwiX5LFVpM63yCnKd1JJqvJO2_eR6qHQieYK3CsKcktI4QdE9CpKVPxe4Y9Q4A-CPuIj0aiSWKRAD7yj=s0-d)
![{i^6} = {i^4}{i^2} = 1 \times ( - 1) = - 1](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tmzgQfb_hxxyscOrTWJS7QG4rYvnZGE6ZsVCCCFoA85zi2bf5NDCuCFQ-RQEqryfkJxE7FIjk62-ErzzRgaaWHs4o-FgqEDJsHX3GF4-DwFkOfZuMkCE6F-1BIv4B92ZSRY_4h9shoy5WJO324u-3VyFDWy3tV-I3QWiQcqPuIZknC_mDeLskJictrS4E81eqq9A6cqa3gIwlf6Eykt4Lai1FrfwUoUygOMbwr4GJtPH5p2GHD-R5Q52B13no=s0-d)
![{i^7} = {i^4}{i^3} = 1 \times ( - i) = - i](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ujtEjC6JrqdIPu0_zPIMwR3MhzpbR6BS1MqlJFbQKv-GimIPPPZj3YnKEwU3K_M-CDJ0mtE1PFQ1NZAKhQ30tKzw6KM6OE1Hoik4lRBR8neKbgj1qgTx1vwPOliefvL-zZbbHUx6PRpqXoPz8qlxbGnZSunq2ArjIkRhIOrwnC13GDC_RPoiEAPfv4rHJtrhP5HkIK-PAx5S2zGbNqamdGXRStk7KWhRwIA95INz0j53j5SVyWKKWNNJhahOM=s0-d)
![{i^8} = {i^4}{i^4} = 1](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tq_Ygh2YNejtAAYUJ6cEMIGUA_GFVy4JD208444dDUa3OciF21uIgfGdn28dgNhXWQBxZ_qcMQ6Y1eHn2ujF7KM3byvwlx45RVfjqZKwXCiqIIm3F0ySBT0UwJuCDrh31TnizXO27UzY-kwRfyX5vaJEO40zB3ue5zb_kqef2jEKe72PrYrNxJLW7EeRii788ocvSdr151g6ggrr2hnl-scKvtow=s0-d)
....................................................
...............................................
Therefore, power of 'i' repeats its values and can attain only four values i.e. i, -1, -i and 1
In general,
,
,
,
, where ![n \in I](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uS1e21CtaMngC4C4J4Sv38YQP7uKgN95Otv-0UdcCRonG5-KxNxQc0ezaxv9Bo3LPvlBILIEXaPXlQzBL5mSriib5bxccfTuwxUOlJRlbJQB7gn7jwBQcHKnQ38Xh2Lh_nya7BxfkWbi3CDzdBMOEMrs1fxHwzA7WrzLSJE9e-Iw=s0-d)
Reciprocal of i :
![\frac{1}{i} = \frac{1}{i} \times \frac{i}{i} = \frac{i}{{{i^2}}} = - i](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vxgobunrGYVz8ZijxP0ZXJuLyQ7aIXAW_C7KBLpdxIMCvn7B22eQ688rcCmbBdyDiHVtRDxbjorSzvklX2uAj1dk155YPqf7fUiHZ_uPHbuZA0gx5af1Id6B7hPheZGVvqqpDfvr6zzRdvRu7NhsL1ZVrA-75mtLAqDh6ctZivv-CYk04T4Wi0B-dAmB1JY84o39I02YTOUDw6430y5wXGYAbBnd2dmq4SfVjotAqu2NyQTWMtnLWcq_NuH5xbZHUQW1pSznchixK5kqWcdx88PvcQkOx-MJOJeGEPXsowubmiRa9XOuInFka2JAJuY-EQuq7AsTyxuA=s0-d)
Here Im(z) represents the Imaginary Part of complex number z.
Purely Real means Imaginary part of complex number is zero i.e. Im(z) = 0 ( e.g. 2i, 8i, -90i etc )
Any complex number is purely imaginary if and only if![z - \overline z = 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v4QMdwCEsVkEvDDCL6r46S7C-wUlbP2iUkYX9YelHO0r2tY626tXcdZrEeq66J7cOprtm5YYgi_A-Vx6tV0S_g3kCM1itGqPEUYYU5LMXwXhA-64xMrq1B8Yd7GmFrEvrf_4sSvkPIg2-qBDR8qUW6WaGnVULvebcQ_ORv1L2296bIFUdcaeC9JW8K7yrEPA=s0-d)
e.g. Show that
is purely Real ?
Since,![z = {\left( {\frac{{2 - 3i}}{{4 + 5i}}} \right)^{2000}} + {\left( {\frac{{2 + 3i}}{{4 - 5i}}} \right)^{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ub69pQvAE9CcNFMznyyGafhYMs10Z4vL-FgH5MqWTbK-6bHLuHVU13SDCgkh05HuGv2E1mbHRcqwYujxUdiYxpTjuFxwjyqpQxM7uWps-FoCpchF6fCivWsNSNM3JWWKzXny9yNhEdqbfgJo3gFbea7hZHgG-M2xwVsFWiStTh6-G6PZObYYZOVA67-khYXB-tEe3rp8uQ5psBSo6bWtFTigwb8xplozfSSBD05NJ9VlrBnPoIFHoUahvbojRq_JOgKtA8C_Myg9zXBsWPLaxYasoK4gQ7jJHjLaKalx6VUQ3o6W2DkDJpEw3cj-R1NJ2J7Q9JlP1dK2pMFajLlIHVox4z55vSsD517n1a3q7ZrKW1dJ8mn1tjv7qGPyJvVYqzXxLdbbc3eavjQtwm8dwt25AcdGw=s0-d)
To find the conjugate of z we replace i from -i,
Therefore,
![\overline z = {\left( {\frac{{2 + 3i}}{{4 - 5i}}} \right)^{2000}} + {\left( {\frac{{2 - 3i}}{{4 + 5i}}} \right)^{2000}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tOG5EoNaM2rHp7Q9qc7CT7pCcOVGv1eptFv62foGWPJJSIipuiRiiG02FlK_km9l_qpxYqRiIu4RJmw0KwBe8HrWoqkmxgTCvRPljjzajpDQQFZVbcTteUIr1oioJ3CLYC_NvOeXCZdF4pj1kb5rqzvRRgTU-3qAWnh8UOwko0jZ-5myPslga37CYzCfUGM1cA_AGloJtVPkgv0POhVMMuKhZDImK5H0w4NLAxE6xJOo0KAdE1-ZSUbLv9rGNeOkGuy-FmNzJV-bs9qNl41ZNKkrAk2TVnHem5OEavfsM1ZveEzqdk61grx4OsDHPQfScqh3cmv57ZsUKNb4-1LYkirYIgOv9_v6PltjEuZyrV7i4uyopo1nGyEEKp_JZV4x6-muVoyZXZLQerzVEcM4tkjdVtBRg2sWKo6UNh26CPOKZ2=s0-d)
so,![z - \overline z = 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v4QMdwCEsVkEvDDCL6r46S7C-wUlbP2iUkYX9YelHO0r2tY626tXcdZrEeq66J7cOprtm5YYgi_A-Vx6tV0S_g3kCM1itGqPEUYYU5LMXwXhA-64xMrq1B8Yd7GmFrEvrf_4sSvkPIg2-qBDR8qUW6WaGnVULvebcQ_ORv1L2296bIFUdcaeC9JW8K7yrEPA=s0-d)
Therefore z is purely Real.
4.![\overline {{z_1} \pm {z_2}} = \overline {{z_1}} \pm \overline {{z_2}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tPEVHI9F0ASJ1z5rphz8KBxHlN5oWa-4FZAX0puWSWP5BktahPXT_cDDKWjoNxAL1UZun-6_ALl7PsbTdHExfCUzWBewl1lrsn2df2ZCpYOtcvA6THe5LdzVxy16lpF8vEPjb7drT33NtaLKrjdUQaY9iR8CebcXdXtSR6ys5JG-izLIgHE1ncm-TcCcykY8b2hxk8SkBR9DasMy-rSyXf94IsYb8S2tGwcYaok1JaLcqLdIo0NV014_AxLbkAI5cJtN41MEbB6SSEPv4Jm_q9pEX13DggIYUWEOzOwKBgbkx3426aEzZH=s0-d)
5.![\overline {\left( {\frac{{{z_1}}}{{{z_2}}}} \right)} = \frac{{\overline {{z_1}} }}{{\overline {{z_2}} }}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sLyoMm0wIfNoiW_PYoLZalI1sl5IOHlSgEMN1fJTpR1074RrUVU6BDfVWqj3hGii69tKivlKQIA-MAXw6uRTj_FLj9XS3GSDWVuih9eF_ZxqKuXIavGJaVf-APMnANCG2IqjBFC6RYVcp5FtYc7kEEkGOvJC4RVVjYBBst1PSev_-NKYIelMNnw9xAtuFYTMcS9rx8VIAgF2tBGEKPS9g25so8J6qaUWADsFVry4vS0JrRo0mqr5wAsDunoE_hXGj6ZTO9NlCXq14F-Sv54NWDtpT0RoOZtvpIvYkQfDtwEWaQBhIExAZkOIu4S2XFwH2BQc8vsvDYXFQxtcoUXifdYWTLEVnIpforrxI4KnxnE-dY06R3jl-NiDh8Kd-5dHH1FPcTmJYpaggElHsScD3pTw=s0-d)
6.![\overline {{z_1}{z_2}} = \overline {{z_1}} \times \overline {{z_2}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sAh1YsCYGF1ERWzuyRV_v6GP3RPh8Pb7A_g2wiN0F197Ceezdc0-xZQs807aset8PC5_65-l_nkLuvc4MofwWYOSwXrKGOopzp1fN1sANdhXnWmQPVikz3n-M35lhA-oyFce3KvCd8W16XvnGeXWDsxjreiKehU3JjI6h-y6iYI6VqgZjzyjO4LwZTzskMs_pgws5RmclYA3mq5lhWqFJrL046MbHzYJLbQeumRlp233154mJRrGhgg6lfb2-wD1ZbVN33pr3vLMoSOkUERln2gO9qBJsux94_6zuIl76tCa2iGQ=s0-d)
IMP
7.![{z_1}\overline {{z_2}} + {z_2}\overline {{z_1}} = 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} ) = 2{{\rm Re}\nolimits} ({z_2}\overline {{z_1}} )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sdicP0b14tPv7kzXLdR_AcwJsfD38GS6INPcf9iFFS7K42vDcoHldjS9qwv8kR798eHIJ6GOGZfW99Bvp4QtFfeZdbn1LWTHyDLEZ_YrNj0-XblfPIZqZqB3bcnJp9Mmj1xOBklv-7qvYG9JIPz2uXCg9jiJiLkWL2xCvxrQUGbToIsSZfcImdLgM2AO93UM9r-2faO-vI8Sv5bsN_dSJ1E6rLpgO1QOdOJabjPi91zVrMXp7AIMbfIP3Pn7CkZdLXDSqxUHXv3kGGJ6ynJNsin8j2Cz6kd5sJmq61u4CI6gwk9wRglaBlpb3GJ5hizzDDDNxQRiZ6nmhXmC6aEDrhDLfvNVhb0USlZMurZ35D9mE-kIu90xYk557dB5573KKmCJRhyP84pZhkjJ_GYpwlVPEGflHfoMF2yGDEruxOojLwD8GEzg_nFgBnU-TlnbtVTW9wnZv76KxJspmmV9yoyg=s0-d)
Explanation,
Since![\overline {\overline z } = z](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t4pdvPjoch58Wituqz5iCN_BbqDgT1OFbEy0I6Tur7kH8R8D--zisT9zOwn2jgVXJ37qNNe1BvytTOwc5TNhTltbJVg7m2NpEpfdl5nmRFmDI7O6JGw-a-CkOgH0eZuZs9wSsxlnkb0UqCyZdXC1vznik9Mwwr5ucQYtkz6wTTvaYsHJF-ff6McmEvF_tTUd8zmn2a4juVy2GUx2OU_w=s0-d)
Therefore,![{z_2}\overline {{z_1}} = \overline {{z_1}\overline {{z_2}} }](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vtepAydN0vpJzJRUZQJ7tVxK14jDb4vDodJVLivwU03zUBiveIYeHCpvytae-2rGRg7J6yhKuYnh6skpTKsyj9tPBqGNk4gLRilyMBV_E0LlnPi2XtNEPSj5frME6Z_Gf2YV9syHsH99c2CCuHESzaAkwoTZXccwawzzhTuSOcIlL4FbnHfrTMlpHE_96hYbhP7sJchQtCNuJio2zZbESnWUOEc13RY80V5AHxm740U6UnhE4csH5q0KmLbMD7vigemphlmqS9GI7qDBbbneBU13YdnXnvOJUONA=s0-d)
And,![z + \overline z = 2{{\rm Re}\nolimits} (z)](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u--zu8ILZKb9HZT-r1zI162sLDZ9fi6HdpzL089sX0jDZzOBWuF4qhRGVBbhfBfI4h7k7gZTFsHVLd2ylGsydiB08WXGmy3fEtUU3uDnoY51ZP6D3ZNT9TRWmlmgP1gKqZUshcYqlrCHYikGH6lUTuW3Y67QJALeXb_SCXS8NZHfwQMSGceyRaJu7WJaDZfsHMH4O3z74pefcW8bRspT5HSXJzOUoCWifklDg7loJ_9tr076Uo=s0-d)
Therefore,![{z_1}\overline {{z_2}} + {z_2}\overline {{z_1}} = {z_1}\overline {{z_2}} + \overline {{z_1}\overline {{z_2}} } = 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uUJdCg5SwyESsP9TzTv6TTsbwW5c--BMgCRP08Kj9pYY3hUUSR2Mpv1uQgdkTMZ-MNPqd7iVJBLd9kvHg6z9vORuiiafHkAh5zSAMFByX1yKOZ7_lqXhN-3gdjLgtKbUdmJVe8_ApFMGkn8F9rYguAIrFxOjb1wP3Ax1bMPwA6-fHk6ZJK7WYVsbhjIlVyRoska-X6No6PZ6JnUGN0UrkA7HtB0NHimMlIqxnMG3Y2ugXW8IuNkOlZmJ_iH_3jqbPn3D3eJvbtDmQR2DMM1Nxrzcx142GiZAbDSJaMRzuaApMk6HuoYGD4Jl0WUokCjtPCrqthV3A1JHSlO5bcJe-7gRDya52T9tLfOmATlJoO580xQEz3hruFrHi2wKnHkHNqj9RW0K06xrp3uCGz0CBpcnII63r27EiSTDqQPR9vLXWeTfU9anVGZ7HKcemiVzfaHltVkvvcV8c5vHndkMBg9faVy83FkGWtqmN8tMmWatHIwoEIjRe3E3w=s0-d)
Since, z = x + iy
or,
or,
Therefore,
Some Points about 'i':
1. If we square any number we will get a positive number.
But, imagine there is an imaginary number 'i' which when square gives a negative number -1.
then,
Remember,
but,
or,
or,
2. i = i
....................................................
...............................................
Therefore, power of 'i' repeats its values and can attain only four values i.e. i, -1, -i and 1
In general,
Reciprocal of i :
Properties of Conjugate:
We know,
If z = x + iy
Conjugate of 'z',
1. ![\overline {\overline z } = z](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t4pdvPjoch58Wituqz5iCN_BbqDgT1OFbEy0I6Tur7kH8R8D--zisT9zOwn2jgVXJ37qNNe1BvytTOwc5TNhTltbJVg7m2NpEpfdl5nmRFmDI7O6JGw-a-CkOgH0eZuZs9wSsxlnkb0UqCyZdXC1vznik9Mwwr5ucQYtkz6wTTvaYsHJF-ff6McmEvF_tTUd8zmn2a4juVy2GUx2OU_w=s0-d)
2. ![z + \overline z = 2{{\rm Re}\nolimits} (z)](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u--zu8ILZKb9HZT-r1zI162sLDZ9fi6HdpzL089sX0jDZzOBWuF4qhRGVBbhfBfI4h7k7gZTFsHVLd2ylGsydiB08WXGmy3fEtUU3uDnoY51ZP6D3ZNT9TRWmlmgP1gKqZUshcYqlrCHYikGH6lUTuW3Y67QJALeXb_SCXS8NZHfwQMSGceyRaJu7WJaDZfsHMH4O3z74pefcW8bRspT5HSXJzOUoCWifklDg7loJ_9tr076Uo=s0-d)
Here Re(z) represents the Real Part of complex number z.
Any complex number is purely imaginary if and only if ![z + \overline z = 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vGf_3zuhQSH-uPfTKuCpyiQpe0ceZnIVDtPKzoPYqpUvJX4fTGSbTdRIUPH23dPZycc1oHVREjYvmuyDf9wZRqkZIMfeaTZOOcnnsrRH8RE7zD08CT3OA6gr9to--eNmAQwUliyYoFeK74KWapyYs5kS9Q_k8y5pSAcvEmwS7g2xkFnqVEgG2l-lgDib0gS7cp=s0-d)
Purely imaginary means Real part of complex number is zero i.e. Re(z) = 0 ( e.g. 2, 3, -4, -5/19 etc)
i.e. if
then number is purely imaginary
and if number is purely imaginary then ![z + \overline z = 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vGf_3zuhQSH-uPfTKuCpyiQpe0ceZnIVDtPKzoPYqpUvJX4fTGSbTdRIUPH23dPZycc1oHVREjYvmuyDf9wZRqkZIMfeaTZOOcnnsrRH8RE7zD08CT3OA6gr9to--eNmAQwUliyYoFeK74KWapyYs5kS9Q_k8y5pSAcvEmwS7g2xkFnqVEgG2l-lgDib0gS7cp=s0-d)
3. ![z - \overline z = 2{{\rm Im}\nolimits} (z)](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uOd4yldV1dUUsrjjCwZUxTNSWbFdaccIY_p-t6LUb0jA8immxiAlPC8JSg8i5xii0Ew5HdmaCi-rEYhIX4L6d0mxUOt-Wwg6vkoSbEfiU6Ctx3kXGIfFrthYWFTMkFFwx4NuVp1e81Csd__eOZkJfh-7dGPcH3Wmvd-2oJxJ77AdwarhxsMZG2tAIvmq6YpE0o3LaPPLB23f94awtLpIVB_dZODHnmbJLspcHnbXCWT63Nmw=s0-d)
Here Im(z) represents the Imaginary Part of complex number z.
Purely Real means Imaginary part of complex number is zero i.e. Im(z) = 0 ( e.g. 2i, 8i, -90i etc )
Any complex number is purely imaginary if and only if
e.g. Show that
Since,
To find the conjugate of z we replace i from -i,
Therefore,
so,
Therefore z is purely Real.
4.
5.
6.
IMP
7.
Explanation,
Since
Therefore,
And,
Therefore,
Comments
Post a Comment