Solved examples on Domain-I

Find the domain of the following : 

Students are requested to read all previous posts before reading this. 


Here is the quick look


Domain: The Possible point of x for which we can get finite value of y

To know more about domain and its properties (click here)

1. If y = \frac{{f(x)}}{{g(x)}} then, g(x) \ne 0,  i.e. {\rm{Denominator}} \ne {\rm{0}}

2. If y = \sqrt {f(x)}   then, f(x) \ge 0


3. If y = {\log _{f(x)}}g(x) then f(x) > 0,f(x) \ne 1  and g(x) > 0


4. If y = {[f(x)]^{g(x)}} then f(x) > 0,f(x) \ne 1 and g(x) must be defined.


5. If y = {\sin ^{ - 1}}f(x) or y = {\cos ^{ - 1}}f(x) then  - 1 \le f(x) \le 1 


 if a function f(x) is defined in some interval or points( by definition domain), and another function g(x) is defined in some other interval and points (by definition domain) .... then sum , subtraction , multiplication and division of the functions are defined on the interval or points which are common to both.

1) If domain of y = f(x) and y = g(x) are {D_1} and {D_2} respectively then domain of 

a) y = f(x) \pm g(x) , Domain = {D_1}\bigcap {{D_2}}

b) y = f(x).g(x)Domain = {D_1}\bigcap {{D_2}}

c) y = \frac{{f(x)}}{{g(x)}}, Since here, g(x) \ne 0, therefore Domain = {D_1}\bigcap {{D_2}}  - \{ g(x) = 0\} , i.e. we have to eliminate those points from {D_1}\bigcap {{D_2}}  for which g(x) = 0, because denominator \ne 0



1. f(x) = \sqrt {{{\log }_{1/2}}\left( {\frac{{5x - {x^2}}}{4}} \right)}


We cannot find the root of negative numbers.


therefore,

1.  {\log _{1/2}}\left( {\frac{{5x - {x^2}}}{4}} \right) \ge 0

2. log is defined when,( i.e. domain of log function = (0,\infty ) )


\left( {\frac{{5x - {x^2}}}{4}} \right) > 0 ( since log is defined only for positive values )



Take 1st,


{\log _{1/2}}\left( {\frac{{5x - {x^2}}}{4}} \right) \ge 0


or,{{{\log }_{1/2}}\left( {\frac{{5x - {x^2}}}{4}} \right) \ge {{\log }_{1/2}}1}



To know how to solve logarithmic inequality (click here)


since base of log is 1/2 which is less than 1,


therefore, inequality gets reversed


\left( {\frac{{5x - {x^2}}}{4}} \right) \le 1 


To know how to solve quadratic inequalities (click here)


or, 5x - {x^2} \le 4


or, {x^2} - 5x + 4 \ge 0


or, {x^2} - 4x - x + 4 \ge 0


or, (x - 4)(x - 1) \ge 0


To know how to solve this (click here)

By wavy-curvy method



x \in ( - \infty ,1]\bigcup {[4} ,\infty ) ..................................... (1)


2. \left( {\frac{{5x - {x^2}}}{4}} \right) > 0


or, 5x - {x^2} > 0


or, {x^2} - 5x < 0


or, x(x - 5) < 0


by wavy-curvy method,



x \in (0,5) ...................... (2)

x must satisfied both the conditions,


therefore, x \in [1,4]\bigcap {(0,5)}


.....................................................................................................  (Number Line)

         -1         0         1          2         3         4          5        6
                      <-------------------------------------------->
*********************>                               <*****************



clearly, x \in (0,1]\bigcup {[4} ,5)


Therefore,  Domain = (0,1]\bigcup {[4} ,5)







2. f(x) = \log (x - [x])



therefore, x - [x] > 0


=> x > [x]


x is always greater than [x] except x belongs to Integers.


see the definition of greatest integer function ( click here )





when, x = Integers, x = [x] 


Also, see from the above graph line y = x touches the graph y = [x] on integers i.e. on integers both the functions are equal.


Therefore, 


Domain = R - I



OR you can write f(x) = \log (x - [x])


f(x) = \log \{ x\}


therefore, {x} > 0



See from the above graph,

{x} is always greater than '0' except on integers, 


because, {x} = 0, when x belongs to Integers


Therefore, 

Domain = R - I









3. f(x) = \sin |x| + {\sin ^{ - 1}}(\tan x) + \sin ({\sin ^{ - 1}}x)


Note: f(x) = g(x) + h(x) + k(x)............


then, Domain = g(x)\bigcap {h(x)\bigcap {k(x)\bigcap {.....} } } .......................


To know more about domain and its properties (click here)



Here are three functions


1. {f_1}(x) = \sin |x|


It is defined for all value of 'x'





Domain, {D_1} = R



2. {f_2}(x) = {\sin ^{ - 1}}(\tan x)


since, {\sin ^{ - 1}}x is defined in the interval [-1,1] i.e. domain of sin inverse x is [-1,1]


therefore,  - 1 \le \tan x \le 1




( see from the above graph that  - 1 \le \tan x \le 1 when  - \frac{\pi }{4} \le x \le \frac{\pi }{4} )

or,   - \tan \frac{\pi }{4} \le \tan x \le \tan \frac{\pi }{4}

since, tan x is an increasing function


therefore,  - \frac{\pi }{4} \le x \le \frac{\pi }{4}


or, x \in \left[ {\frac{{ - \pi }}{4},\frac{\pi }{4}} \right]


or, {D_2} = \left[ {\frac{{ - \pi }}{4},\frac{\pi }{4}} \right]




3. {f_3}(x) = \sin ({\sin ^{ - 1}}x)


since, {\sin ^{ - 1}}x is defined in the interval [-1,1] i.e. domain of sin inverse x is [-1,1]


Therefore, Domain of \sin ({\sin ^{ - 1}}x) = [-1,1]


or, {D_3} = [ - 1,1]


also, see the graph



Therefore, domain of f(x) = \sin |x| + {\sin ^{ - 1}}(\tan x) + \sin ({\sin ^{ - 1}}x),

 D = {D_1}\bigcap {{D_2}\bigcap {{D_3}} }


D = R\bigcap {\left[ {\frac{{ - \pi }}{4},\frac{\pi }{4}} \right]} \bigcap {[ - 1,1]}


pi/4 = 3.14/4 < 1


and, -pi/4 > -1


therefore, {D_{}} = \left[ {\frac{{ - \pi }}{4},\frac{\pi }{4}} \right]









4. f(x) = {\log _e}|{\log _e}x|

To know the properties of logarithmic function (click here)


Therefore, 


1. for {\log _e}x to be defined


x > 0


or, x \in (0,\infty )


2. for {\log _e}|{\log _e}x| to be defined


|{\log _e}x| > 0




see the above graph,


at x = 1, {\log _e}x = 0



therefore, x \in (0,\infty ) - \{ 1\}  or x \in (0,1)\bigcup {(1,\infty )}


therefore, take the intersection of (1) and (2)


Domain = (0,1)\bigcup {(1,\infty )} \bigcap {(0,\infty )}

  
or, Domain = (0,1)\bigcup {(1,\infty )}





Comments

  1. Hi there, just became aware of your blog through Google, and
    found that it is really informative. I am going to watch out
    for brussels. I'll be grateful if you continue this in future.
    Numerous people will be benefited from your writing. Cheers!


    My site: meez coin hack

    ReplyDelete

Post a Comment

Popular posts from this blog

Properties of Modulus & Argument: Complex Number

Fractional Part function

Geometrical Meaning of Argument and Modulus - I: Complex Number