Logarithamic expression concepts-II

y = {\log _a}x  ;

Always remember for base,
a > 0a \ne 1 (base cant be zero or negative or 1, it can be less than 1 . e.g. 3/2, 1/2)

And for negative value log doesn't exist  (why??)
Reason is simple we cant get any negative number even not get zero whatever be the power of a positive number.
e.g. {(2)^{ - 55}} , 
positive or negative what do you think ???
clearly positive.
multiplying 1/2 , 55 times and get positive values.

therefore, x > 0

so, whenever you see a logarithmic expression ,
y = {\log _a}x ; x > 0a > 0 and a \ne 1

Properties:
1. lo{g_a}1 = 0 ; a > 0,a \ne 1
clearly, whatever be the value of "a", {a^0} = 1

2. {\log _a}a = 1;  a > 0,a \ne 1
{a^1} = a ,\forall a

3. \ln x = {\log _e}x and {{\rm logx}\nolimits}  = lo{g_{10}}x;  x > 0

4. Base changing formula:-

{\log _a}b = \frac{{\log b}}{{\log a}} = \frac{1}{{\log a/\log b}} = \frac{1}{{{{\log }_b}a}} ( in second term you can take any base)

 \Rightarrow {\log _a}b.{\log _b}a = 1

Proof: 
consider, {\log _a}b ; a > 0,a \ne 1,b > 0
{\log _a}b = m   ....................... (i)
 \Rightarrow {a^m} = b (by definition)

consider, \frac{{{{\log }_k}b}}{{{{\log }_k}a}}  ;  k > 0,k \ne 1

let {{{\log }_k}b = q} and {{{\log }_k}a = p} ...................... (ii)
\begin{array}{l}
 \Rightarrow {k^q} = b\\
{k^p} = a
\end{array}

since,{a^m} = b
 \Rightarrow {({k^p})^m} = {k^q}
 \Rightarrow pm = q

or, m = \frac{q}{p}

therefore, from (i) and (ii),

{\log _a}b = \frac{{\log b}}{{\log a}}

5. {\log _c}ab = {\log _c}a + {\log _c}b ; c > 0,c \ne 1 and a,b > 0

6. lo{g_c}\frac{a}{b} = {\log _c}a - {\log _c}b   ;  c > 0,c \ne 1 and a,b > 0

7. lo{g_c}{a^b} = b{\log _c}a  ;   c > 0,c \ne 1,a > 0

8. {\log _{{c^s}}}a = \frac{1}{s}{\log _c}a ;   c > 0,c \ne 1,a > 0 and s \ne 0 (note)

proof is simple left to reader.

9. a = {b^{{{\log }_b}a}}

take log with base 'b' both side, you will get the proof.

Examples:

1. Find the value of {3^{{{\log }_5}7}} - {7^{{{\log }_5}3}}

 = {7^{{{\log }_7}{3^{{{\log }_5}7}}}} - {7^{{{\log }_5}3}}


 = {7^{{{\log }_5}7.{{\log }_7}3}} - {7^{{{\log }_5}3}}            


 = {7^{{{\log }_5}3}} - {7^{{{\log }_5}3}}

 = 0

Note {a^{{{\log }_b}c}} - {c^{{{\log }_b}a}} = 0


2. (I.I.T)

{\log _{2x + 3}}(6{x^2} + 23x + 21) = 4 - {\log _{3x + 7}}(4{x^2} + 12x + 9)

for, {\log _{2x + 3}}(6{x^2} + 23x + 21)
this logarithmic expression is defined when

2x + 3 > 0 \Rightarrow x >  - 3/2,   ............... (i)
2x + 3 \ne 1 \Rightarrow x \ne  - 1   ....................... (ii)

and, 6{x^2} + 23x + 21 > 0 (quadratic expression here a > 0 and D > 0)

6{x^2} + 14x + 9x + 21 > 0

2x(3x + 7) + 3(3x + 7) > 0

or, (2x + 3)(3x + 7) > 0

from, wavy curvy method,




x \in ( - \infty , - \frac{7}{3})\bigcup {(\frac{{ - 3}}{2}} ,\infty ) ........................................ (iii)


for {\log _{3x + 7}}(4{x^2} + 12x + 9)
this logarithmic expression is defined when,

3x + 7 > 0 \Rightarrow x >  - 7/3 ................................................(iv)

3x + 7 \ne 1 \Rightarrow x \ne  - 2 ....................................................(v)

4{x^2} + 12x + 9 = {(2x + 3)^2} > 0

and since square of any number is always greater than or equal to zero

 \Rightarrow x \ne  - \frac{3}{2},  (since 2x + 3 becomes 0 ) ........................ (vi)

we have to consider only those values of x which satisfy all (i), (ii), (ii), (iv), (v) and (vi)... that is common to all.

because for those values of x , both logarithmic expressions are defined

means x common to all that is intersection of all,
i) x >  - 3/2
ii) x \ne  - 1 ( x belongs to real number except -1)
iii) x \in ( - \infty , - \frac{7}{3})\bigcup {(\frac{{ - 3}}{2}} ,\infty )
iv)x >  - 7/3
v)x \ne  - 2 (means x belongs to real number except 2)
vi) x \ne  - \frac{3}{2} ( x belongs to real number except -3/2)



clearly intersection of all, that is given equation is defined for ,

x >  - \frac{3}{2},x \ne  - 1, .............................................(A)


now, {\log _{2x + 3}}(6{x^2} + 23x + 21) = 4 - {\log _{3x + 7}}(4{x^2} + 12x + 9)

or, {\log _{2x + 3}}(2x + 3)(3x + 7) = 4 - {\log _{3x + 7}}{(2x + 3)^2}

{\log _{2x + 3}}(2x + 3) + {\log _{2x + 3}}(3x + 7) = 4 - 2{\log _{3x + 7}}(2x + 3)

1 + {\log _{2x + 3}}(3x + 7) = 4 - 2{\log _{3x + 7}}(2x + 3)

{\log _{2x + 3}}(3x + 7) = 3 - \frac{2}{{{{\log }_{2x + 3}}(3x + 7)}}

let t = {\log _{2x + 3}}(3x + 7)

t = 3 - \frac{2}{t}

{t^2} - 3t + 2 = 0

 \Rightarrow t = 1 or t = 2

when t = 1,

{\log _{2x + 3}}(3x + 7) = 1

 \Rightarrow 3x + 7 = 2x + 3

 \Rightarrow x =  - 4 ( not in (A) .... i.e. for this value equation is not defined)

when t = 2,

3x + 7 = 4{x^2} + 9 + 12x

4{x^2} + 9x + 2 = 0

(4x + 1)(x + 2) = 0

x =  - 1/4 or x =  - 2 

According to (A) only x =  - 1/4 is the solution, 

ANSWER x =  - 1/4


Comments

Popular posts from this blog

Properties of Modulus & Argument: Complex Number

Fractional Part function

Geometrical Meaning of Argument and Modulus - I: Complex Number