Some Standard Results: Complex Number

LIKE TO JOIN ON FACEBOOK (click here)


Standard results in Complex number (Argand Plane)



1. Section Formula :-




z = \frac{{m{z_2} + n{z_1}}}{{m + n}}


2.  Centroid:-



centroid,  z = \frac{{{z_1} + {z_2} + {z_3}}}{3}


3. Equation of a Straight line :-

a) Parametric Form:-

From triangle OBP


z = {z_2} + t({z_1} - {z_2})


or, z = t{z_1} + (1 - t){z_2}




b) \arg (z - {z_1}) - \arg ({z_2} - {z_1}) = 0 or \pi


=> \arg \left( {\frac{{z - {z_1}}}{{{z_2} - {z_1}}}} \right) = 0 or \pi


 \Rightarrow \frac{{z - {z_1}}}{{{z_2} - {z_1}}} is Purely Real


 \Rightarrow \frac{{z - {z_1}}}{{{z_2} - {z_1}}} = \overline {\left( {\frac{{z - {z_1}}}{{{z_2} - {z_1}}}} \right)}


 \Rightarrow \frac{{z - {z_1}}}{{{z_2} - {z_1}}} = \left( {\frac{{\overline z  - \overline {{z_1}} }}{{\overline {{z_2}}  - \overline {{z_1}} }}} \right) ........................ (i)


{ \Rightarrow \left| {\begin{array}{ccccccccccccccc}
z&{\overline z }&1\\
{{z_1}}&{\overline {{z_1}} }&1\\
{{z_2}}&{\overline {{z_2}} }&1
\end{array}} \right| = 0}


And, therefore condition of collinearity of {z_1},{z_2}\& {z_3}

because if  {z_1},{z_2}\& {z_3} are collinear then area form by these points must be 0.

{\left| {\begin{array}{ccccccccccccccc}
{{z_1}}&{\overline {{z_1}} }&1\\
{{z_2}}&{\overline {{z_2}} }&1\\
{{z_3}}&{\overline {{z_3}} }&1
\end{array}} \right| = 0}



General Equation of a Straight Line:


\overline a z + a\overline z  + b = 0


Where 'a' is a complex number and 'b' is a Purely Real Number.


a - complex number, b - Purely Real Number


Proof:- From (i) we have ,

z(\overline {{z_2}}  - \overline {{z_1}} ) - {z_1}\overline {{z_2}}  + |{z_1}{|^2} = \overline z ({z_2} - {z_1}) - \overline {{z_1}} {z_2} + |{z_1}{|^2}


 \Rightarrow \overline z ({z_2} - {z_1}) - z(\overline {{z_2}}  - \overline {{z_1}} ) + ({z_1}\overline {{z_2}}  - \overline {{z_1}} {z_2}) = 0



multiply  by 'i' on both sides,



i\overline z ({z_2} - {z_1}) - iz(\overline {{z_2}}  - \overline {{z_1}} ) + i({z_1}\overline {{z_2}}  - \overline {{z_1}} {z_2}) = 0



Suppose,  i\overline z  = a and {z_2} - {z_1} = z


and  - iz = \overline {i\overline z }  = \overline a  ( since, \overline i  =  - i )


And,  {z_1}\overline {{z_2}}  - \overline {{z_1}} {z_2}


 = {z_1}\overline {{z_2}}  - \overline {{z_1}\overline {{z_2}} }  = b (let)


(We know that, z - \overline z  = Purely Real )


therefore, {z_1}\overline {{z_2}}  - \overline {{z_1}} {z_2} = {z_1}\overline {{z_2}}  - \overline {{z_1}\overline {{z_2}} }  = Purely Real ( 'b' )



then equation becomes ,

\overline a z + a\overline z  + b = 0


Where 'a' is a complex number and 'b' is a Purely Real Number.





4. Condition for the four points to be cyclic :

Angle A + Angle C = pi

 \Rightarrow \arg \left( {\frac{{{z_4} - {z_1}}}{{{z_4} - {z_1}}}} \right) + \arg \left( {\frac{{{z_2} - {z_3}}}{{{z_4} - {z_3}}}} \right) = \pi


 \Rightarrow \arg \left[ {\left( {\frac{{{z_4} - {z_1}}}{{{z_4} - {z_1}}}} \right).\left( {\frac{{{z_2} - {z_3}}}{{{z_4} - {z_3}}}} \right)} \right] = \pi   ( since arg.z1 + arg.z2= arg.(z1.z2) )


Since argument of negative x-axis is pi therefore complex no. must be on negative side of x-axis,


{ \Rightarrow \left( {\frac{{{z_4} - {z_1}}}{{{z_4} - {z_1}}}} \right).\left( {\frac{{{z_2} - {z_3}}}{{{z_4} - {z_3}}}} \right)} = Purely Real



5. Equation of a circle:-



a) |z - {z_0}| = r




b) Diametric form:-


\arg \left( {\frac{{z - {z_2}}}{{z - {z_1}}}} \right) =  \pm \frac{\pi }{2}


Therefore, {\frac{{z - {z_2}}}{{z - {z_1}}}} is purely imaginary,


for purely imaginary numberz + \overline z  = 0


 \Rightarrow \frac{{z - {z_2}}}{{z - {z_1}}} + \overline {\left( {\frac{{z - {z_2}}}{{z - {z_1}}}} \right)}  = 0


or, \frac{{z - {z_2}}}{{z - {z_1}}} + \frac{{\overline z  - \overline {{z_2}} }}{{\overline z  - \overline {{z_1}} }} = 0


or, (z - {z_2})(\overline z  - \overline {{z_1}} ) + (\overline z  - \overline {{z_2}} )(z - {z_1}) = 0



(c) General Equation of Circle:-


z\overline z  + a\overline z  + \overline a z + b = 0


Centre \equiv  - aRadius = \sqrt {|a{|^2} - b}


Proof:-

Equation of circle,|z - {z_0}| = r

or, |z - {z_0}{|^2} = {r^2}

or, (z - {z_0})(\overline {z - {z_0}} ) = {r^2}

or, (z - {z_0})(\overline z  - \overline {{z_0}} ) = {r^2}

or, z.\overline z  - z.\overline {{z_0}}  - {z_0}\overline z  + {z_0}.\overline {{z_0}}  = {r^2}

or, z.\overline z  - z.\overline {{z_0}}  - {z_0}\overline z  + |{z_0}{|^2} = {r^2}

or,z.\overline z  - z.\overline {{z_0}}  - {z_0}\overline z  + |{z_0}{|^2} - {r^2} = 0

let, a =  - {z_0}, Centre is at '-a'
therefore, \overline a  =  - \overline {{z_0}}

and let, b = |{z_0}{|^2} - {r^2}

 \Rightarrow r = \sqrt {|{z_0}{|^2} - b}  = \sqrt {|a{|^2} - b}   ( Radius)

Equation becomes,

z\overline z  + a\overline z  + \overline a z + b = 0



d) |z - {z_1}{|^2} + |z - {z_2}{|^2} = k 


will represent the circle if k \ge \frac{1}{2}|{z_1} - {z_2}{|^2}




LIKE TO JOIN ON FACEBOOK (click here)

Comments

Popular posts from this blog

Properties of Modulus & Argument: Complex Number

Fractional Part function

Geometrical Meaning of Argument and Modulus - I: Complex Number