Geometrical Meaning of Argument and Modulus - II: Complex Number

LIKE TO JOIN ON FACEBOOK (click here)

13. {{\rm Re}\nolimits} (z) \ge \frac{1}{2} 

z = x + iy


then, x \ge \frac{1}{2}


14. {{\rm Re}\nolimits} \left( {\frac{1}{z}} \right) \le \frac{1}{2}

if z = x + iy


1/z = 1/ (x + iy)


       = \frac{{x - iy}}{{(x + iy)(x - iy)}}


       = \frac{{(x - iy)}}{{{x^2} + {y^2}}}


        = \frac{x}{{{x^2} + {y^2}}} - i\frac{y}{{{x^2} + {y^2}}}


since, {{\rm Re}\nolimits} \left( {\frac{1}{z}} \right) \le \frac{1}{2}


therefore, \frac{x}{{{x^2} + {y^2}}} \le \frac{1}{2}


or, {{x^2} + {y^2} - 2x \ge 0}


 is the equation of circle having centre (0,1) and radius '1'. The region represented of {{x^2} + {y^2} - 2x \ge 0} is outside of the circle.


centre \equiv (1,0), radius = 1






NOTE:
|{z_1} - {z_2}| = distance between {z_1} & {z_2} .

1. | z + i | = | z - i |

i.e. | z + i | = | z - (-i ) | distance of z from '-i' 
and | z - i | = distance of z from 'i' 

Therefore, locus of 'z' is the perpendicular bisector of the line joining 'i' and '-i'





2. | z + 2 - 3i | = | z - 3 + i |

| z + 2 - 3i | = distance of z from -2 + 3i 
| z - 3 + i | = distance of z from 3 - i

locus of z is the perpendicular bisector of line joining (-2,3) and (3,-1)




3. | z - i | = 1

distance of z from i = 1 ( constant)

therefore the equation represents circle 

centre \equiv (0,1), Radius = 1


Equation in coordinate form:
{x^2} + {(y - 1)^2} = 1


4. 1 < | z - 2 + 3i | < 2

or, 1 < | z - ( 2 - 3i ) | < 2

centre \equiv (2, - 3)





LIKE TO JOIN ON FACEBOOK (click here)

Comments

Popular posts from this blog

Properties of Modulus & Argument: Complex Number

Fractional Part function

Geometrical Meaning of Argument and Modulus - I: Complex Number