Inverse Trigonometric Functions - II

Carefully understand the domain and range of following functions


4. f(x) = {\cot ^{ - 1}}x




Domain = ( - \infty ,\infty ) = R


Range = (0,\pi )


You can observe from the above graph


{\cot ^{ - 1}}( - x) = \pi  - {\cot ^{ - 1}}x, where x belongs to domain of arccot x



Comparison between the graph of arctan x and arccot x




You can observe from above graph,

{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \frac{\pi }{2},  x belongs to R i.e. domain of arctan(x) and arccot(x)






5. f(x) = {{{\rm cosec}\nolimits} ^{ - 1}}x


Domain = ( - \infty , - 1]\bigcup {[1,\infty ) = R - ( - 1,1)}


Range = \left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right] - \{ 0\}



You can observe,


{\rm{cose}}{{\rm{c}}^{{\rm{ - 1}}}}{\rm{( - x) =  - cose}}{{\rm{c}}^{{\rm{ - 1}}}}{\rm{x}}, where x belongs to domain of arccosec(x)





6. f(x) = se{c^{ - 1}}x




Domain = ( - \infty , - 1]\bigcup {[1,\infty ) = R - ( - 1,1)}


Range = [0,\pi ] - \left\{ {\frac{\pi }{2}} \right\}



From the above graph, you can observe

{\sec ^{ - 1}}( - x) = \pi  - {\sec ^{ - 1}}x, x belongs to domain of arcsec(x)




Comparison between the graph of arccosec x and arcsec x





Observation from above graph,



\cos e{c^{ - 1}}x + {\sec ^{ - 1}}x = \frac{\pi }{2}, where x belongs to domain of arccosec(x) or arcsec(x)

Comments

Popular posts from this blog

Fractional Part function

Properties of Modulus & Argument: Complex Number

SIgnum , Modulus and Greatest Integer Functions