Inverse Trigonometric Function - I
Since none of the six trigonometric functions are one to one i.e. for many x we get the same values.
As, sin 0 = 0, sin pi = 0, sin 2pi = 0 ..... and so on. They are not one-one rather they are periodic functions i.e. repeat its values after definite interval.
Since, a function must be single valued i.e. one element of domain has only one image.
( to know about functions click here )
Therefore to get the inverse trigonometric function we restrict the value of trigonometric function to its Principal Branch in which a function get all its values. The list of respective principal value corresponding to their inverse trigonometric functions are as follows.
MUG THIS CAREFULLY
S.No. Function Principal Value Branch
1.
![\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_v_TL9zBxXNFnbDDdVeVuj3ua2N1vntnJErVPGEBT0O1WqRPGoqu8t00ZrLUhd0GbdOq4F-s8nZmTsUFWsQ0oZqU4ZZ7q9UFfIa4cgz1cvlX4nLKT08P3G-Xwe7xUkP3dwBypQBOhuuAKOx0YuH7g5SUpdgrgabpUvbTpWhrrVgM4Mixqffmxpxvb04mvhz1a7JbbbEf6CguG8iFwUtzqFZnua0JStZz-fJjckcio7LHuSumxqXckCAVg2Dx3M_b0VMsSW2txqP0Fppau1I=s0-d)
2. .
![[0,\pi ]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sFch8YdTXh2MVd6Ngg09GKjjyZNArCf0A63eBGwQStG4E49XPu9saDv8PFAYC09Kiey88juSRxiLbB-xrA1BngrObAVOY7uZPe04r-HDbyWXpjbh9YkdrHHdNy3Cyu58uinLiMgcWrTVRTBlH7sdoUWolvbrhnkxZeMFHF1c36kzASizfC=s0-d)
3.

4.
( arccosec x does not exist at x = 0 )
5.
(arcsec x does not exist at x = pi/2)
6.

GRAPHS OF INVERSE TRIGONOMETRIC FUNCTIONS:
1.
![Domain = [ - 1,1]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sXzxy_nX8JdnmQccMMrLXlU3X4KhSFlEXHRVuYhJUnMJRg08h7DmH8a4nZIqPnnERVzuQtQ2npgTWPuXrsda5e599J7mVqgecD1kA1Ju-iynjnSBNQWV1aBoDyUJrjNw5CaaOzEFCKSo6knslauKZU5CxCHravDPMGXRU0uOtbJqu_tzNwwFYu81QGS5ol=s0-d)
![Range = \left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sJcnwrPSTYAYjus5SXLIgHIWYnPZcmDFFkVyK6fVc_s40AxFb6Sha3bQx30SAw7IrZnVHKKVgTtRVyPN54CzZ_P4tuykIWT8PbLkN1uvYm_k_bC4Djo-_453Fu7AyyvbV-LH8IdsNYf-6qr8XuLRMSVpl1GyVHF_u8wl9iON2yIY1tKoPymroiv2Y6oU1xNi_GOiSXWV7NNU7iF0XF8cAUSpg-BztoqTHScspLGDEv7-rc4MtyV9FtdyzUn9xBgYLaQ1ginhEf_n2OGEXW9VKdOX-3jCCQEA=s0-d)
You can also observe from graph,

2.
![Domain = [ - 1,1]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sXzxy_nX8JdnmQccMMrLXlU3X4KhSFlEXHRVuYhJUnMJRg08h7DmH8a4nZIqPnnERVzuQtQ2npgTWPuXrsda5e599J7mVqgecD1kA1Ju-iynjnSBNQWV1aBoDyUJrjNw5CaaOzEFCKSo6knslauKZU5CxCHravDPMGXRU0uOtbJqu_tzNwwFYu81QGS5ol=s0-d)
![Range = [0,\pi ]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsz9e7CPasbnzJnu7vqRy36FCMmu2fyl6zZG7gVbYSSf7QE8V-Fn-jAQJno61riHN6Ah58tci26r_01hauzyGe2lIu30xjr24YAd0PksPfBVTIATz-lE2NrIC0qisolm-KPCSrlKCIuhFv9zyWDJk74Y8fnQOk-jw8hiBsizVobpXJkbIM7sjpG4SeCXiFmA=s0-d)
You can also observe from the graph,

See the difference between the graph of arcsin x and arccos x.
From the above graph, you can observe

3.


From the above graph you an observe,

As, sin 0 = 0, sin pi = 0, sin 2pi = 0 ..... and so on. They are not one-one rather they are periodic functions i.e. repeat its values after definite interval.
Since, a function must be single valued i.e. one element of domain has only one image.
( to know about functions click here )
Therefore to get the inverse trigonometric function we restrict the value of trigonometric function to its Principal Branch in which a function get all its values. The list of respective principal value corresponding to their inverse trigonometric functions are as follows.
MUG THIS CAREFULLY
S.No. Function Principal Value Branch
1.
2. .
3.
4.
5.
6.
GRAPHS OF INVERSE TRIGONOMETRIC FUNCTIONS:
1.
You can also observe from graph,
2.
You can also observe from the graph,
See the difference between the graph of arcsin x and arccos x.
From the above graph, you can observe
3.
From the above graph you an observe,




Comments
Post a Comment