Inverse Trigonometric Function - I
Since none of the six trigonometric functions are one to one i.e. for many x we get the same values.
As, sin 0 = 0, sin pi = 0, sin 2pi = 0 ..... and so on. They are not one-one rather they are periodic functions i.e. repeat its values after definite interval.
Since, a function must be single valued i.e. one element of domain has only one image.
( to know about functions click here )
Therefore to get the inverse trigonometric function we restrict the value of trigonometric function to its Principal Branch in which a function get all its values. The list of respective principal value corresponding to their inverse trigonometric functions are as follows.
MUG THIS CAREFULLY
S.No. Function Principal Value Branch
1.
![\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tejnQy5A5dLFgmu2qrevJbkLn9DFIuYgfbVPv1qvvCOTfWYMcDzQpRPLeC0ZYZ_QcVehg7oCHI1Ode18J5KusQU3k52PgfaEbX8DGv5vIK-pbrVTGHDyVV0qYIkbNkcyp_tZ5Y9IEfXwDr5WYsgjy7yG-2vzPQsD8POpE4UX3RLvXYzcCcA7pY74zJauDugd2uQJOp-ujHHU60Abuv-SNKlApQgZCHl8UaV-cPWZEitUmdQ6q4VSFYFne8CwF0w2muA6hnBVAZ8RMqbaVl=s0-d)
2. .
![[0,\pi ]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tnQ4TWo9zQMJiipps7mdTgC7EBksGAcp8KIKZhnqyozCr2LDOs18TSNQyz3dT2M-d-cb9mwUzTIJ504uhoWaewD3jVw9IzzMwgf1rMIXJaK6W6oiR6pL7CnDBgKohBZiWQNgyOLT1R54BVOYLx6v2a666O5w7o8Mm_GActZzLz5v0lkoSU=s0-d)
3.

4.
( arccosec x does not exist at x = 0 )
5.
(arcsec x does not exist at x = pi/2)
6.

GRAPHS OF INVERSE TRIGONOMETRIC FUNCTIONS:
1.
![Domain = [ - 1,1]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s2qSS742-xzTZsCi-scAHp_QOeWIVLIlaRBFiWD520KoOSJkcdH59sxHoi6RQL0D3WyMAl-mh-U4Mq-Nfg9pwKAgMzTMnZKqYFPu-BVtq5t-WB1pNT0xY_cUUx9HzOxAElxWjKtVJf5qreudzG3BfLJR48_r0hw9nHLb5asnrJ5XPVBrTPN3sxSeZT7JCf=s0-d)
![Range = \left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tCLmdbJh586-_vfMqZyEKrUASgiF2o07PTgNjOBfz1hR85Gmg4lntkdDUTeZnVbKTuq1KHWEjDG5hxL6Ed7ksZHVjl8jhs3zcPXgw9f1OVBd3bBvoHJRU1NamMbzGRWgkLdx6P_t2Kh5FpPcXKmkOGQ5HuBF8TfbH33Zp12It0VOFBqxHz_YKlAhvDc-bYVIrN1KC7Ftxb8zw_5QS80g6Ci0nMimysNuLB_CWCUN1wxnaA2a2OQwTnthxCNOIuUqkROkLReE6wWKa4nCk7woHj1IaE87ANwQ=s0-d)
You can also observe from graph,

2.
![Domain = [ - 1,1]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s2qSS742-xzTZsCi-scAHp_QOeWIVLIlaRBFiWD520KoOSJkcdH59sxHoi6RQL0D3WyMAl-mh-U4Mq-Nfg9pwKAgMzTMnZKqYFPu-BVtq5t-WB1pNT0xY_cUUx9HzOxAElxWjKtVJf5qreudzG3BfLJR48_r0hw9nHLb5asnrJ5XPVBrTPN3sxSeZT7JCf=s0-d)
![Range = [0,\pi ]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uTA_JgplnyG3Fp3b5rR5WncU9NRv0UjeDj7GJJpj0cUQvU-S9eFCgaqIa1-j7ZFHCdzDxSCUxHjE2t4GdtK2TGPsabZArmfQCaaP74qA3WPG0x08A8VcZCAJAICFeL6gK6rp6XGe80hEsRN0DE_FVluotQN5UlLQSSBsLgjEHbpa9XviV1DPxhIz0fulB8YQ=s0-d)
You can also observe from the graph,

See the difference between the graph of arcsin x and arccos x.
From the above graph, you can observe

3.


From the above graph you an observe,

As, sin 0 = 0, sin pi = 0, sin 2pi = 0 ..... and so on. They are not one-one rather they are periodic functions i.e. repeat its values after definite interval.
Since, a function must be single valued i.e. one element of domain has only one image.
( to know about functions click here )
Therefore to get the inverse trigonometric function we restrict the value of trigonometric function to its Principal Branch in which a function get all its values. The list of respective principal value corresponding to their inverse trigonometric functions are as follows.
MUG THIS CAREFULLY
S.No. Function Principal Value Branch
1.
2. .
3.
4.
5.
6.
GRAPHS OF INVERSE TRIGONOMETRIC FUNCTIONS:
1.
You can also observe from graph,
2.
You can also observe from the graph,
See the difference between the graph of arcsin x and arccos x.
From the above graph, you can observe
3.
From the above graph you an observe,




Comments
Post a Comment