Problems based on Exponential function and Power Function

1. POLYNOMIAL :- {a^b}

a - Variable
b - Constant

e.g. {x^2}{x^n}

2. EXPONENTIAL :- {a^b}

a - Constant
b - Variable

e.g. {2^x}{e^x}

3. POWER FUNCTION:-{a^b}


a - Variable
b - Variable

e.g. {x^x}

CONDITION FOR POWER FUNCTION:



if, y = {\left[ {f(x)} \right]^{g(x)}} , y is a power function
then,
i) f(x) > 0f(x) \ne 1
ii) g(x) must be defined

e.g.
1.|x - 1{|^{({{\log }_3}{x^2} - 2{{\log }_x}9)}} = {(x - 1)^7}

First step is to find for which points equality is defined

We know log is defined when ( http://iitmathseasy.blogspot.in/2013/03/logarithamic-expression-concepts-ii.html)

{{{\log }_3}{x^2}} is defined when
a) {x^2} > 0 \Rightarrow x \ne 0
or, x \in R - \{ 0\}

{{{\log }_x}9} is defined when,
b) x > 0,x \ne 1
or, x \in (0,\infty ) - \{ 1\}

from definition of power function
c) |x - 1| > 0 \Rightarrow x \ne 1x \in R - \{ 1\}

and, |x - 1| \ne 1 \Rightarrow x \ne 0,2 (x - 1 \ne 1 \Rightarrow x \ne 2 and 1 - x \ne 1 \Rightarrow x \ne 0 )

for x = 0 and 2; |x - 1| = 1 (from graph), |x - 1| \ne 1 \Rightarrow x \ne 0,2
therefore, x \in R - \{ 0,2\}

Remember this NOTE:- Euclid theorem is also important on solving the question of power function.
Recall " Equal things are equal to each other "

d) Since L.H.S. is positive 
means LHS>0
=> RHS>0
means, {(x - 1)^7} > 0 \Rightarrow x > 1

or, x \in (1,\infty )

so equality is defined on,
Intersection of  a) ,b), c) and d) 

 \Rightarrow x > 1,x \ne 2.............................................................. (i)

or, x \in (1,\infty ) - \{ 2\}

Now second step is to solve the equality,

we know how to solve modulus equality,
but since equality is not defined for x < 1
we left them,
for x > 1

|x - 1| = x - 1

therefore,

{(x - 1)^{(2{{\log }_3}{x^{}} - 2{{\log }_x}{3^2})}} = {(x - 1)^7}

or, {(x - 1)^{(2{{\log }_3}x - 4{{\log }_x}3)}} = {(x - 1)^7}

or,2{\log _3}x - 4{\log _x}3 = 7

let, {\log _3}x = t

therefore,

2t - \frac{4}{t} = 7

or,2{t^2} - 7t - 4 = 0

or,2{t^2} - 8t + t - 4 = 0

or,(t - 4)(2t + 1) = 0

  \Rightarrow t =  - \frac{1}{2}  or  t = 4 

\begin{array}{l}
 \Rightarrow {\log _3}x =  - \frac{1}{2}\\
x = {3^{ - 1/2}}\\
 \Rightarrow x = \frac{1}{{\sqrt 3 }}
\end{array}
here we get the value which is less than 1

THIRD STEP: 
Not possible because not in the interval for which the equality is defined (see equation (i) )

Next, for t = 4

\begin{array}{l}
 \Rightarrow {\log _3}x = 4\\
x = {3^4}\\
x = 81
\end{array}

THIRD STEP:
which is in the interval for which the equality is defined see (i)

therefore , ANSWER x = 81






2. {(x + 1)^{\log (x + 1)}} = 100(x + 1)

First step is to find for which points equality is defined,

from the definition of power function,

a) x + 1 > 0 \Rightarrow x >  - 1

and, x + 1 \ne 1 \Rightarrow x \ne 0

since LHS is positive, power of any positive number is positive,
therefore, RHS > 0( Euclid Theorem)

b) x + 1 > 0 \Rightarrow x >  - 1

therefore take the intersection of a) and b)
the equality is defined in,

x >  - 1,x \ne 0 ................................................................ (i)

Second Step to solve the equality,
take log of both side,

\log (x + 1).\log (x + 1) = \log 100 + \log (x + 1)

or, {[\log (x + 1)]^2} = 2 + \log (x + 1)

or, {y^2} = 2 + y ( take \log (x + 1) = y)

 \Rightarrow y = 2 or y =  - 1

When, y = 2

\begin{array}{l}
\log (x + 1) = 2\\
x + 1 = 100\\
x = 99
\end{array}

THIRD STEP: which is in (i) hence valid solution

Next when, y =  - 1

\begin{array}{l}
\log (x + 1) =  - 1\\
x + 1 = 1/10\\
x =  - \frac{9}{{10}}
\end{array}

THIRD STEP:

which is also a valid solution because belongs to (i)

therefore solution is 

x \in \{  - \frac{9}{{10}},99\}













Comments

Popular posts from this blog

Fractional Part function

Properties of Modulus & Argument: Complex Number

SIgnum , Modulus and Greatest Integer Functions