Practice Questions on Inequality...

1. if, |x - 1| + |x + 1| = 2 , x belongs to

 \begin{array}{l}
a)\{ 1\} \\
b)\{  - 1\} \\
c)( - \infty ,1]\\
d)[ - 1,1]
\end{array}

2. \frac{{|x + 2| - x}}{x} < 2
\begin{array}{l}
a)( - \infty ,0]\bigcup {[2,\infty )} \\
b)[0,2]\\
c)( - \infty ,0]\bigcup {[4,\infty )} \\
d)[2,4]
\end{array}

3. \left| {|x - 2| - 1} \right| \ge 3
\begin{array}{l}
a)[2,6)\\
b)( - \infty ,2]\bigcup {(4,\infty )} \\
c)( - \infty ,2]\bigcup {[4,\infty )} \\
d)( - \infty ,2]\bigcup {[6,\infty )} 
\end{array}

4.Solution of {x^2} + x + |x| + 1 \le 0 is :
\begin{array}{l}
a)(1,2)\\
b)(0,1)\\
c)\emptyset \\
d)(1,2]
\end{array}

5. |x{|^{{x^2} - x - 2}} < 1

\begin{array}{l}
a)(1,2)\\
b)(1,\infty )\\
c)( - \infty ,1)
\end{array}
d) None of These


6. {2^x} + {2^{|x|}} \ge 2\sqrt 2

\begin{array}{l}
a)\left( { - \infty ,{{\log }_2}(\sqrt 2  + 1)} \right)\\
b)(0,\infty )
\end{array}
c)\left( {\frac{1}{2},\log {}_2(\sqrt 2  - 1)} \right)
d)\left( { - \infty ,\log {}_2(\sqrt 2  - 1)} \right)\bigcup {[\frac{1}{2}} ,\infty )





Comments

Post a Comment

Popular posts from this blog

Fractional Part function

Properties of Modulus & Argument: Complex Number

SIgnum , Modulus and Greatest Integer Functions