Modulus inequality


We have learnt how to solve modulus equality,
now, we are going to learn how to solve modulus inequality.

Consider,


|x| \le 5


i) for x \le 0


 - x \le 5


or, x \ge  - 5


therefore,  - 5 \le x \le 0  ( because we take x \le 0 )   ......................(i)


ii) for,, x \ge 0


x \le 5


therefore, 0 \le x \le 5...........................(ii)


combining (i) and (ii)

x \in [ - 5,0]\bigcup {[0,5]}
or, x \in [ - 5,5]\forall x ( \forall  means "for every")

you can directly solve this inequality, first to put -x in place of |x| then x in place of |x|

|x| \le 5
or,  - x \le 5  \Rightarrow x \ge  - 5

now, x \le 5

therefore, x \in [ - 5,5]

from graph,

|x| \le 5
we have two curves , y = |x| and y = 5, and we have to find those values of 'x' for which y = |x| is less than or equal to y = 5

clearly from graph, between -5 and 5 curve |x| is less than to 5


so immediately the answer will be , x \in [ - 5,5]


2. Suppose, question  is |x| \ge 5

clearly from graph, for x \le  - 5, curve of |x| is greater than or equal to 5 
and for x \ge 5 , |x| is also greater than 5

so, x \in ( - \infty , - 5]\bigcup {[5,\infty )}


3. |x - 1| < 2


|x-1| consists of two lines 1-x and x-1 

1 - x < 2
 - x < 1
or, x >  - 1

and, x - 1 < 2

or, x < 3
therefore,  - 1 < x < 3
or, x \in ( - 1,3)

4.  3|x - 1| - |2x - 5| \le 2|x - 3|



There are three critical points 1 ( for |x - 1|), 5/2 (for |2x - 5|) and 3 (for |x - 3|) 
follw the post of solving the modulus equality

Step by step process, take from left


i) x \le 1
ii) 1 \le x \le \frac{5}{2}
iii)\frac{5}{2} \le x \le 3
iv) x \ge 3

i) x \le 1,

3(1 - x) - (5 - 2x) \le 2(3 - x)

3 - 3x - 5 + 2x \le 6 - 2x

or, x \le 8

since we take x \le 1,
therefore, we take those values of x \le 8 which are lie in  x \le 1, i.e. intersection of both the intervals 
( - \infty ,8] and ( - \infty ,1]

or, ( - \infty ,8]\bigcap {( - \infty ,1]}

  \Rightarrow  x \le 1 or x \in ( - \infty ,1]...............................................................(a)

ii) 1 \le x \le \frac{5}{2}

3(x - 1) - (5 - 2x) \le 2(3 - x)

3x - 3 - 5 + 2x \le 6 - 2x

7x \le 14

or, x \le 2

we have to take intersection of [1,\frac{5}{2}] and ( - \infty ,2] i.e. only those values which lies on 1 \le x \le \frac{5}{2}
or, [1,\frac{5}{2}]\bigcap {( - \infty ,2]}

therefore,  1 \le x \le 2 or x \in [1,2]  ................................................... (b)

iii) \frac{5}{2} \le x \le 3

3(x - 1) - (2x - 5) \le 2(3 - x)

3x - 3 - 2x + 5 \le 6 - 2x

3x \le 4

or, x \le \frac{4}{3}

therefore, solution x \in ( - \infty ,\frac{4}{3}]\bigcap {\left[ {\frac{5}{2},3} \right]}
or,  x \in \emptyset   , therefore no solution in this interval............................................................................ (c)

iv)x \ge 3

3(x - 1) - (2x - 5) \le 2(x - 3)

3x - 3 - 2x + 5 \le 2x - 6

 - x \le  - 8

x \ge 8

therefore solution, x \in [8,\infty )\bigcap {[3,\infty )}
or, x \in [8,\infty )  ......................................................................(d)


since (a) , (b), (c) and (d) are solutions of inequality indifferent intervals ,
therefore, considering all solution is
x \in ( - \infty ,1]\bigcup {[1,2]} \bigcup {[8,\infty ]}

or x \in ( - \infty ,2]\bigcup {[8,\infty ]}   ( since  ( - \infty ,1]\bigcup {[1,2]}  = ( - \infty ,2] )






















Comments

Popular posts from this blog

Fractional Part function

Properties of Modulus & Argument: Complex Number

SIgnum , Modulus and Greatest Integer Functions